
www.manaraa.com

The Formal Foundation of the Semantics of ComplexEvents in Active Database Management SystemsDetlef ZimmerC{LAB�F�urstenallee 11D-33102 PaderbornPhone: +49 5251 606131Fax: +49 5251 606065det@c-lab.de Rainer UnlandUniversit�at -GH- EssenSch�utzenbahn 70D-45117 Essenunlandr@informatik.uni-essen.deAbstractActive database systems have been developed for ap-plications needing an automatic reaction in responseto certain conditions or events. Events can be simplein nature or complex. Complex events are built fromsimpler ones with the help of operators of an event al-gebra.While numerous papers propose extensions of a givenset of event operators only very few address the foun-dations of the semantics of complex events. As a conse-quence most proposals mix di�erent concepts (aspects)of complex events and o�er event operators as the onlymeans to control their semantics. This leads to pecu-liarities as aspects are not always handled uniformly byoperators. Sometimes operators have other semanticsthan expected. Moreover operators of di�erent alge-bras which, at �rst glance, look the same may havedi�erent semantics.We developed a formalmeta-model for complex events.It divides the semantics of complex events into elemen-tary, essentially independent dimensions. The result-ing elementary building blocks can be used� to gain a solid understanding of the basic prop-erties of complex events,� to detect peculiarities in existing event algebrassuch as those mentioned above,� to compare existing event algebras and� to design a consistent and clear event algebra.�Cooperative Computing & Communication Lab-oratory (Siemens Nixdorf Informationssysteme AG,Universit�at Paderborn)

1 IntroductionRules are used in Active Database Sys-tems to monitor situations of interest andto trigger a timely response when these sit-uations occur. Rules are useful for a num-ber of database tasks: They can enforce in-tegrity constraints, compute derived data, con-trol data access, gather statistics, and more.In this paper ECA-Rules (Event-Condition-Action-Rules) are considered. The conditionof a rule is evaluated when its triggering eventoccurs, and if the condition is satis�ed, therule's action will be executed.Examples of triggering events, denoted by ei,are the execution of update or retrieval opera-tions provided by the Database ManipulationLanguage (DML) of the underlying databasesystem. Such events are pre-de�ned and arecalled primitive events. To react to more so-phisticated situations, complex events havebeen introduced. They are de�ned from sim-pler ones by using operators of an event al-gebra.For instance, events based on a sequence op-erator, denoted by e1;e3, are triggered when-ever e3 occurs, provided that e1 has alreadyoccurred. Another example is a negation op-erator that can be used to de�ne events, de-noted by e1;:e2;e3, which are triggered when-ever e1;e3 occurs, provided that e2 did not oc-cur between the occurrences of e1 and e3.In general, complex events are triggered by a1

www.manaraa.com

set of primitive and/or complex 'component'events which, in addition, must often occur ina prede�ned order. The events that cause acomplex event to occur are bound to it andare used for the de�nition of its parameters.The parameters of an event are used to transferinformation about the event to other parts ofthe rule's implementation. Sometimes severalprimitive and/or complex component eventsmay be available for binding to a complexevent and a selection must be made.We have developed a formal meta-model basedon Evolving Algebras [Gur94], which de�nesthe semantics of complex events. In this pa-per we informally present the basic conceptsof this meta-model (for a complete and for-mal de�nition see [Zim97]). The meta-modelis based on the three essentially independentdimensions event instance pattern, eventinstance selection and event instance con-sumption1, which can be further split into(sub)dimensions. The event instance pat-tern is responsible for the speci�cation of thepoint in time at which events occur, the eventinstance selection de�nes which events arebound to a complex event, and the event in-stance consumption determineswhen eventsbecome invalid, i.e., they cannot be consideredfor the detection of further complex events.In most event algebras, such as those de�nedin HiPAC [DBM88], SAMOS [Gat94], Ode[GJS92], Chimera [MPC96] and NAOS [CC96],event operators are the only way to specifythese di�erent dimensions. This leads to a con-fusion of concepts that makes the understand-ing of an inherently complex area even moredi�cult. We will show that currently there area number of peculiarities and irregularities inexisting event algebras that can be attributedmainly to these confusions.For instance, consider the case where event e1,to be triggered before e3, is triggered twice. InSnoop [Mis91, CKAK94], as we will show later,this sequence causes e1;e3 to be triggered twicewhile e1;:e2;e3 is triggered only once.1The terms event consumption or consumptionmode have been used previously in the literature (see,e.g., [BBKZ93, Day95, DGG95, Gat94]). However,in these papers the authors' essential meaning corre-sponds to aspects of our dimension event instance se-lection and thus seems to be misleading.

The literature provides relatively few studiesof the subdivision of the semantics of complexevents. In Snoop [Mis91, CKAK94], param-eter contexts were introduced2. They are re-sponsible for the determination of the set ofevents that are bound to complex events. Forexample, SAMOS [Gat94] copes with the se-mantics of this by introducing additional oper-ators called '*', 'last' and TIMES, which selectthe oldest ('*'), the most recent event ('last') orseveral events ('TIMES') out of a set of events.As will be shown in this paper, our meta-modelcontributes to current research from several di-rections:� It helps to gain a solid understanding ofthe basic properties of complex events.� It helps to detect peculiarities in existingevent algebras such as those mentionedabove.� It can be used to compare existing eventalgebras, and� it provides a suitable basis on which to de-sign a consistent and clear event algebra.In the following section we introduce some ba-sic de�nitions that are used to de�ne our meta-model described in section 3. In the next twosections we will use our meta-model for thespeci�cation and comparison of the semanticsof existing event algebras. The semantics ofthe event algebras de�ned in Snoop [CKAK94],SAMOS [Gat94] and Ode [GJS92] are speci�edin section 4 and compared to each other in sec-tion 5. Section 6 considers related work, andsection 7 concludes the paper.2 Basic De�nitionsThis section introduces the basic de�nitionsneeded for further discussion of our concepts.The formal and complete description of ourmeta-model can be found in [Zim97].In principal, the data and transaction modelsof the underlying database system are orthogo-2Parameter contexts were later used in ACOOD[Eri93] and in an extended version in ADL [Beh95].2

www.manaraa.com

nal to the functionality of ECA-rules and thuswill not be considered in our model.De�nition 1:An event is an indicator for the occurrence ofa situation which may require an (automatic)reaction from the system. It is de�ned to be aninstantaneous, atomic occurrence at one pointin time (i.e., it happens completely or not atall).A call to a database operation like the manipu-lation or retrieval of some data is an exampleof an event.De�nition 2:For this paper we assume an equidistant dis-crete time domain having 0 as the originand consisting of points in time represented bynon-negative integers.De�nition 3:In database systems a concrete event is repre-sented by an event instance (EI), which con-tains the necessary information about the spe-ci�c event.An event type (ET) describes the commonessentials of a su�ciently similar set of eventinstances on a more abstract level. It speci-�es the occasions on which events of the typeoccur, de�nes the parameters of the event in-stances, and lays down the impact of their oc-currences on the occurrences of other events.Example 1:An update operation on some data item x maybe invoked several times. In this case the eventtype speci�es that each call of the update oper-ation triggers an event of its type. The actualinvocation of the update operation is an eventand this event is represented internally withinthe system by an event instance.De�nition 4:An event instance contains parameterssuch as the identi�cation of its event type, theevent occurrence time, the actual set of eventinstances that caused this event instance to oc-cur and that are bound to it and other type-speci�c parameters.In general, events should be permitted to oc-cur simultaneously. Some models (see [Gat94,CKAK94]) exclude such a behavior. However,we believe that such restrictions are not ade-quate as one single event may trigger a num-

ber of other (complex) events, which may evenbe of the same type3. Thus, di�erent eventinstances may get the same event occurrencetime.De�nition 5:There are a number of elementary event types,called primitive event types. Primitiveevent types are commonly classi�ed into ei-ther database or temporal or external eventtypes. Database event types correspond to suchdatabase operations as data manipulation ortransaction operations. On the other hand,temporal event types specify points in time ei-ther absolutely (e.g., "at 5 o'clock on the 5thof November 1997"), relatively (e.g., "5 mi-nutes after calling the update operation on thedata item x") or periodically (e.g., "every 5 se-conds"). External event types represent eventsthat occur outside the database, or even out-side the computer system, and are communi-cated (signaled) to the database system by spe-cial database system operations.Applications sometimes need to react to morecomplex situations than those expressible byprimitive events. For this reason, complexevents, which consist of a combination of prim-itive events, are introduced.De�nition 6:A complex event type can be constructedby combining simpler event types with thehelp of the operators of an event algebra.The de�nition of a complex event type (recur-sively) consists of an operator (op) that com-bines a number of primitive and/or complexevent types4. These types are called compo-nent event types while the constructed com-plex event type is called the parent eventtype. Complex component event types canbe used to construct even more complex eventtypes. The recursive construction of (complex)event types leads to an event type hierarchywhere the primitive event types constitute itsleaves and complex component event types itsinner nodes.The question of whether the component events3In [CKAK94] a so-called parameter context contin-uous was introduced by which a single event can triggermultiple complex events of one type.4Note, that this complex event type can be used inthe de�nition of an even more complex event type.3

www.manaraa.com

of a complex event are triggered by di�erenttransactions or the same transaction does nothave any impact on the design of the basic con-cepts of our meta-model5. It is, in principal,orthogonal to the event semantics consideredin this paper and will therefore not be dis-cussed here in further detail.We assume that event types are independent ofeach other, i.e., events or event instances of acomponent event type, which is used by several(parent) event types, are available for all thesetypes.For the detection of complex events it is impor-tant to know which events have occurred andin what order. To describe this information weintroduce event instance sequences.De�nition 7:An event instance sequence (EIS) is a par-tially ordered set of event instances that haveoccurred in the system. The order of the eventinstances corresponds to the order of theirevent occurrence times. It can be di�erentiatedbetween instance-oriented and type-orientedevent instance sequences. Instance-orientedevent instance sequences are used in com-plex event instances to represent the compo-nent events that caused this complex event tooccur. Type-oriented event instance se-quences are maintained for each event typeand contain only those component event in-stances of the system that are relevant to thedetection of complex events of this type.Notations:For the following discussions we use capitalsto denote event types and small letters to de-note events or event instances. We will useEi to denote an event type, Eij to denote itscomponent event types and EISEi to denoteits event instance sequence. We will use esito denote the events of Ei, eisi to denote theevent instance representing esi and EISeisi todenote the event instance sequence of eisi . Thesuperscript index s reects the order in whichthe events or the event instances of Ei occur.The event instances of an event instance se-quence are denoted in the order of their times-tamps. The event instances belonging to aninstance-oriented event instance sequence will5This question is, however, important for the designof the rule execution model.

sometimes simply be listed in brackets.Example 2:Consider a complex event that is to be signaledwhenever an event of type E1 occurs before anevent of another type E2. Such complex eventsare represented by an event type E3, which isbased on the event types E1 and E2 combinedby a sequence operator. The sequence operatoris denoted by ';' and the event type E3 by E3:= ; (E1, E2).De�nition 8 :The event occurrence times of the event in-stances belonging to EISeisi of a complex eventinstance eisi de�ne the time interval duringwhich the detection of esi takes place. Theevent instances whose event occurrence timesare equal to the start of the time interval rep-resent the initiator events (initiators) of esi .The event instances whose event occurrencetimes are equal to the end of this time intervalrepresent the terminator events (termina-tors) of esi . The events which are neither ini-tiators nor terminators are the intervenors ofesi . While initiators mark the beginning of thedetection process of complex events, termina-tors mark the occurrence of complex events.The occurrence time of the terminators of acomplex event instance de�nes its occurrencetime. For simplicity we assume that an everyevent has only one initiator and one termina-tor.We assume that primitive events are detectedby the system, that the system generates thecorresponding instances, and that the order ofthe event occurrence times of these instancesreects the order in which the events they rep-resent have occurred. Whenever a primitive orcomplex event instance is detected it is insertedinto the type-oriented event instance sequencesof its parent event types.3 The Meta-modelFor reasons of readability this section presentsthe basic dimensions of the semantics of com-plex events on a more informal level. A de-tailed and formal de�nition can be found in[Zim97]. We focus on single event types Eiand their event instance sequences EISEi.4

www.manaraa.com

3.1 Division of the Semanticsof Complex Events into Di-mensionsAs can be deduced from existing event alge-bras, there are in essence three questions thatmust be answered for the semantics of complexevents to be de�ned in su�cient detail. Theexamples of the following questions rely on theevent instance sequence EIS1 := ei11 ei21 ei13 ei12ei22 ei32 ei23.Question 1 (event instance pattern):What concrete sequences of 'component' eventinstances (patterns) trigger a complex event?The answer to this question depends on a num-ber of aspects: the types of instances belongingto a sequence, the number and order of theiroccurrence, and the non-existence of instancesof a type, etc. For example, the event instancesequence EIS1 triggers an event e14 of eventtype E4 := ;(E1, E2, E3). However, it doesnot trigger an event of a type which requiresthat no instances of E3 are allowed to occurbetween the instances of E1 and E2.The fact that a complex event is triggered doesnot mean that it is automatically clear whichcomponent event instances are associated withthis complex event. That is, it may not beclear which component event instances are tobe used in the condition and action parts of therule that are triggered by the complex event.There may be a choice as to which event isto be chosen as input for the execution of arule out of a number of instances of the sameevent type that occurred while the pattern ofthe complex event was being satis�ed. So thequestion is:Question 2 (event instance selection):What concrete event instances should be cho-sen?The event instances that can be accessed bythe triggered rule are de�ned by the event in-stance sequence of the complex event instancewhich triggered the rule. In general, there areseveral possibilities for its de�nition. Considerthe event e14 of E4 triggered by EIS1. Theevent instance sequence of ei14 can be de�nedas (ei11 ei12 ei23) or (ei11 ei32 ei23) or (ei11 ei21 ei12 ei22ei32 ei23) or any other valid combination.

Question 3 (event instance consumption):What instances are exclusively consumed bya complex event instance, i.e., what instancesbecome unavailable for further use after theywere used by this complex event instance?For example, event instances of type E4 mayconsume the necessary instances of type E1and E2 while they preserve instances of E3.Thus, two events e14 and e24 of E4 may be trig-gered by EIS1, where ei14 contains the eventinstance sequence (ei11 ei12 ei23) and ei24 (ei21 ei22ei23).Each question addresses a di�erent dimensionof an event speci�cation. We will call thesedimensions event instance pattern, event in-stance selection, and event instance consump-tion. In the following we will concentrate onthe semantics of each dimension; the completesyntax is listed in the appendix.3.2 Semantics of the Dimensions3.2.1 Event Instance PatternThe event instance pattern of an event typeEi describes at an abstract level the event in-stance sequences EISEi that will trigger eventinstances of Ei. It must consider four aspects.Example 3:Consider the event instance sequence EIS2 :=ei11 ei21 ei13 ei12 ei23 and the event types E4 :=; (E1, E2, E3), E5 := ; (E1, E2) and E6 := ;(E3, E5).The event type E4 speci�es that event in-stances of the types E1, E2 and E3 must occurin the order implied by the sequence operatorin the de�nition of E4 (type and order).An event e14 of type E4 will be triggered assoon as ei23 occurs. However, the initial timeinterval that belongs to ei14 starts with ei11 andterminates with ei23. Within this time intervalthere are two instances of event type E1 (ei11and ei21) and two instances of event type E3(ei13 and ei23). It has to be clari�ed as to howmany of these instances are necessary at leastand at most to trigger an event of type E4(repetition).In the event type E5 it is speci�ed that �rstan instance of type E1 has to occur andthen an instance of type E2. However, it5

www.manaraa.com

remains unclear whether these event instancesmust not be interrupted by any other eventinstance (tightly coupled), e.g., ei13 must notoccur between ei11 (or ei21) and ei12 or arbitraryother event instances can occur between theinstances of E1 and E2 (loosely coupled), e.g.,ei13 can occur between ei11 (or ei21) and ei12(coupling).During the detection of an event e15 of E5(initiated by e11 or e21 and terminated by e12) anevent e13 of E3 occurs. Now, the event occur-rence time of the instance ei15 corresponds tothat of ei12. Thus, the event occurrence timeof ei13 is older than that of ei15, but youngerthan that of the initiator of ei15 (e11 or e21). Thetype E6 must specify whether it allows suchconcurrency (concurrency).Type and OrderThe event types whose instances must (or mustnot) occur in an event instance sequence, andthe restrictions concerning their order (if thereare any), are de�ned by an event operator andits component event types.Our model provides the following basic set ofoperators:The ==-operator (simultaneous operator)requires that instances occur simultaneously,i.e., their occurrence time is the same; the ;-operator (sequence operator) requires thatinstances occur in a speci�ed order; the ^-operator (conjunction operator) requiresthat a number of instances occur in any or-der; the _-operator (disjunction operator)requires that at least one of the speci�ed in-stances occurs; and the :-operator (negationoperator) requires that the given instance(s)should not occur in a given period or interval.Periods are speci�ed in the form of eventinstances which mark the beginning and endof the time interval being considered forevaluation. The negation operator only makessense in conjunction with a period duringwhich the non-occurrence of event instancesis monitored. Thus, the �rst operand of thenegation operator speci�es the beginning andthe last one speci�es the end of the periodduring which the non-occurrence of the in-stances of the 'inner' types is to be monitored.

RepetitionFor every component event type Eij a delim-iter may be speci�ed. It restricts the numberof event instances of Eij which must occurto satisfy the event instance pattern. If nodelimiter is given, one or more instances of atype must occur. An upper and/or a lowerbound may be given as a delimiter. Thus,the number of event instances required for anevent instance pattern may be restricted toa range of numbers or even to a particularnumber.Coupling and ConcurrencySo-called operator modes can be used tode�ne the coupling mode and the concur-rency feature. The mode (coup mode) de-�nes whether event instance patterns may beinterrupted by event instances not relevantto the event detection (non-continuous), orwhether they may not (continuous). Themode (cc mode) is used to de�ne whether thetime intervals associated with the event in-stances which cause a complex event to occurmay or may not overlap (overlapping versusnon-overlapping).3.2.2 Event Instance SelectionEvent instance selection is responsible forthe construction of instance-oriented event in-stance sequences, i.e., it determines what eventinstances are taken from the type-orientedevent instance sequence EISEi to form theevent instance sequence EISeisi . This selectionis performed individually for each componentevent type Eij and it is quite natural to se-lect at least all those instances that caused thecomplex event to occur.Example 4:Consider the event instance sequence EIS3 :=ei11 ei12 ei21 ei22 ei32 ei31 ei13, the event type E4 :=; (E1, E2, E3) and the event e14 of E4 which istriggered by EIS3.Let us assume that the instances ei21 and ei13have already been selected for the types E1 andE3. Thus, we will focus on the selection of in-stances of type E2. Consider the four eventinstance sets: (1) (ei21 ei22 ei13), (2) (ei21 ei32 ei13),6

www.manaraa.com

(3) (ei21 ei22 ei32 ei13) and (4) (ei12 ei21 ei22 ei32 ei13).While sets (1) and (2) contain only one in-stance of E2, sets (3) and (4) contain severalinstances. Set (1) contains the oldest instanceof E2 which, together with ei21 and ei13, ful�llsthe event instance pattern of E4, while set (2)contains its most recent instance. Note thatthe selection of event instances depends on in-stances that were already selected: if we hadchosen ei11 instead of ei21, the instance ei12 wouldbe the oldest instance of E2 that could be se-lected. Set (3) contains only instances whichoccurred between the selected instances of E1and E3, and thus takes the event instance pat-tern into account, while set (4) contains everyinstance of E2.The selection strategies can be classi�ed ac-cording to whether only the minimum num-ber of event instances required by the delim-iter of Eij is selected (minimum instance set-oriented strategy) or a greater number is se-lected (cumulation-oriented strategy). In themost extreme case, the cumulation strategywould select the whole set of event instancesof Eij belonging to EISEi.First (last) are minimum set instance-oriented selection strategies. These alwaysselect the set of instances with the old-est (youngest) timestamps. One cumulation-oriented selection strategy is cumulativewhich selects the complete instance set ofEij. The other cumulation-oriented selectionstrategy restricted cumulative chooses onlythose instances of Eij that are considered bythe event instance pattern of Ei.To obtain a unique solution one has to de�nethe order in which event instances must be col-lected from the given event instance sequence:Example 5:Let us consider the event type E4 := ; (last :E1,�rst :E2, E3) and the event sequence EIS3.Since ei13 had triggered the recognition of evente14 of E4, it is the terminator instance of thetime interval assigned to ei14. However, the ini-tiator instance of ei14 is not yet clear. Of course,it must be an instance of E1. However, whichone should be chosen: ei11 or ei21 or ei31?If the event type sequence were traversed fromright to left, i.e., �rst the correct instance ofevent type E3 is identi�ed (which is, of course,

trivial) then the instance of E2 and �nally theinstance of E1, we would have to choose ei13,ei12, and ei11.If we traversed the event type sequence inthe opposite direction, we would �rst have tochoose ei31 since it represents the last occur-rence of an event of E1 in EIS3. However, thiswould not lead to a legal solution because thetime interval speci�ed by the initiator instanceei31 and the terminator instance ei13 does not in-clude an instance of E2. Therefore, we have tobacktrack. This means that �rst or last haveto be interpreted as �rst or last legal instanceof the given type. The next possibility wouldbe ei21. The interval spanned by ei21 and ei13contains ei22 which is not the �rst instance ofE2, but is the �rst in the interval spanned byei21 and ei13. Therefore, ei21, ei22, and ei13 wouldbe the correct solution if left to right traversalwere chosen.Thus, the result of the event instance selectiondepends on the order of the traversal.To summarize, we must �rst specify the orderof traversal of the time interval that belongsto a concrete event instance of an event type,either from left-to-right or from right-to-left.The corresponding event instance sequence isthen traversed in this order and the �rst legalsolution that is identi�ed is the correct one.Here the semantics can be controlled by the op-erator mode trav mode that can be either left-to-right (default mode) or right-to-left.3.2.3 Event Instance ConsumptionEvent instance consumption de�nes the impactof the occurrence of events of a complex eventtype Ei on the availability of event instances ofits component event types for the subsequentdetection of further events of type Ei. Theset of event instances that is considered by thedetection of events of the type Ei is de�nedby the event instance sequence EISEi. Thus,event instance consumption de�nes the set ofevent instances that are deleted from EISEiwhenever an event esi occurs.Example 6:Consider event type E3 := ; (last :E1, �rst :E2)and its event instance sequence EISE3 := ei11ei21 ei12 ei22. With the occurrence of ei12, an in-7

www.manaraa.com

stance ei13 is generated with the event instancesequence EISei13 which contains the instancesei21 and ei12. Now let us assume that an eventinstance eis2 of type E2 is consumed if it is usedin an event instance sequence of event eis3. Theoccurrence of ei13 may cause the deletion of (1)ei21 or of (2) ei11 and ei21 or (3) no deletion mayoccur. Dependent on this result, ei22 will (1+3)or will not (2) trigger another event e23 of E3.If it is triggered, ei23 may be considered to becaused by the event instance sequence (ei21 ei22)(3) or (ei11 ei22) (1).We distinguish three di�erent consumptionmodes that can be speci�ed individually foreach component event type. The sharedmodedoes not delete any instance of Eij (3). Theexclusive parameter mode removes all in-stances of Eij from EISEi that belong to theevent instance sequence of an instance eisi (1).The exclusive mode deletes all instances ofEij from EISEi that occur before the termina-tor instance of eisi (2).If the same component event type Eij isused several times in the de�nition of Ei, thestrongest consumption mode will dominate theweaker ones.3.3 Event GroupsA terminator instance can trigger the recogni-tion of several events of its parent type if itis used in the shared mode. All such events(event instances) of the same event type Eiwhich are triggered by the same terminatorform an event group.3.3.1 Event Instance SelectionTo avoid in�nite looping (e.g., by in�nitelyconstructing event instances from the same ba-sic event instances) di�erent event instancesof the same type must di�er in that they arenot allowed to exclusively use the same (basic)event instances.Example 7:Consider the event instance sequence EIS4 :=ei11 ei21 ei31 ei12 ei41 ei22 ei13 and the event typeE4 := ; (.... E1, E2, shared :E3). The oc-currence of ei13 will trigger a number of events

of type E4, depending on the modes assignedto E1 and E2. Let us assume that E2 has themodes �rst : exclusive parameter, E1 is either�rst : shared (the resulting parent event type isdenoted by E5), last : shared (E6), or restrictedcumulative : shared (E7). Figure 1 presents thesemantics of these event types.
e1

1 e1 e1e e e12
2

2
2

: Time interval over which the complex event is detected

: Initiator : Terminator

1
3

3

(I)

E5

(II)

E6

E

(III)

7

e1
4

E

(IV)

8

: IntervenorFigure 1: Event Instance Selection for EventGroupsThis example shows that the event instanceselection modes introduced above are not suit-able for the de�nition of event types that be-have like the event type E8 (see �gure 1). Theinstances of the event group of E8 consider allthose event instance sets that contain exactlyone instance for each component event type.To support the semantics here, the event in-stance selection modes combinations andcombinations minimum are introduced. Ifone of these modes is used for a componenttypeEij the di�erent instance sets of Eij are al-ternately used and combined with the event in-stance sets of the other component event typesto form event instance sequences of the eventinstances belonging to a group. While themode combinations minimum de�nes thatonly the minimum number of event instancesrequired by the delimiter of Eij are taken intoaccount, combinations does not impose thisconstraint, i.e., it can also consider larger setsof event instances.Note that these modes only make sense if they8

www.manaraa.com

are used for event types Ei whose events sharetheir terminator events.Example 8:The event type E8, the behavior of which isshown in �gure 1, can be de�ned as E8 := ;(combinations minimum : shared : E1, combi-nations minimum : shared : E2, shared : E3).3.3.2 Event Instance ConsumptionExample 9:Now consider the event type E5 de�ned in ex-ample 7 and the event instance sequence EIS4extended by ei32 ei23. Figure 2 shows the se-mantics of E5. Every pair of events of E2 andE3 will subsequently trigger an event of E5.The event instance consumption modes do noto�er the possibility of distinguishing betweenthe availability of event instances inside andoutside a group. Thus event instances that areshared by instances cannot be protected frombeing shared by other groups as well.
: Time interval over which the complex event is detected

: Initiator : Terminator

(I)

E5

e1
1 e1

2 e1
2 e2

2e1
3 e1

3e1
4 e2

3 e3
2

: IntervenorFigure 2: Event Instance Consumption forEvent GroupsTo cope with the semantics, we introduce thedomains inside a group (inside) and outside agroup (outside). They can be used in conjunc-tion with the consumption modes and de�nethe availability of event instances only insideor outside a group (as in �gure 2).The event instance consumption for the out-side domain is applied to the union of theevent instance sequences of the event instancesbelonging to the same group.3.4 Dependencies between theDimensionsThe dependencies between the dimensions ofthe meta-model become clear when we look atthe event detection processed for an event typeEi:

(1) E_i.event_instance_pattern()(2) ei := E_i.new_instance;(3) ei.EIS := E_i.event_instance_selection();:(4) E_i.EIS := E_i.event_instance_consumption(ei.EIS);This algorithm is executed each time an eventinstance is inserted into EISEi.In the �rst step, it is determined whether theevent instance sequence of Ei ful�lls its eventinstance pattern (1). If the pattern is ful-�lled a new event instance ei is generated (2).Next, its event instance sequence is computed(3). Finally, the event instances that were con-sumed by ei are deleted from the event instancesequence EISEi (4).Thus, the dimensions of the meta-model arenot independent. However they are orthogo-nal, i.e., modes of di�erent dimensions can becombined without any restrictions.4 Speci�cation of ExistingEvent AlgebrasIn this section the meta-model is used to spec-ify the semantics of some of the most sophis-ticated event algebras presented in the litera-ture. In the �rst section of this chapter we willde�ne the semantics of some event algebras. Inthe second section for each event algebra, thesemantics are �rst described in terms of ourmeta-model, then some irregularities revealedby our meta-model are discussed.4.1 Semantics of the Event Al-gebras4.1.1 SnoopSnoop has been developed at the Universityof Florida. The concepts of Snoop have beenimplemented in a prototype called Sentinel[CKAK94, Kri94]. The de�nition of the se-mantics of Snoop is only partially formal. Thussometimes - as it is shown in [Zim96] - its se-mantics is ambiguous.In addition to the standard event operatorsconjunction (4), disjunction (r), sequence (;)and negation (NOT) Snoop de�nes the opera-tors: ANY, A, P , A� and P �. Events based on9

www.manaraa.com

the ANY operator, denoted as ANY(m, E1,E2, .., En), where m � n, occur wheneverevents fromm types out of the n distinct eventtypes occur6. Events based on the a-periodicoperator A, denoted as A(E1, E2, E3), occurwhenever the a-periodic event (E2) occurs dur-ing the closed time interval speci�ed by E1 andE3. The periodic operator P is used to de�neperiodically occurring temporal events. A� andP � are cumulative versions of the operators Aand P , i.e. events based on them are only trig-gered once at the end of the time interval (E3).Based on the initiator and terminator eventsSnoop de�nes four parameter contexts:In the recent context only the most re-cent instance of the set of instances thatmay have started the detection of a complexevent is used. When a complex event occursthe instances of the component event typeswhich cannot be initiators of future events aredeleted. An initiator of an event continues toinitiate new event occurrences until a new ini-tiator occurs.In the chronicle context the oldest instanceof each component event type is bound to theinstances of its parent type. The instances ofthe component event types can only be usedonce.In the continuous context, if a terminatorevent is detected, for each initiator an eventinstance of its parent type is generated. Inthis context, an initiator is used at least oncefor detecting complex events.In the cumulative context all instances of thecomponent event types are bound to the in-stance of the parent type. The instances ofthe component event types can only be usedonce for an event detection.Every Snoop operator can be combined withone of these parameter contexts to form anevent type. A complex event can be con-structed by applying several operators whichmay have assigned di�erent parameter con-texts. This aspect has not been investigatedby Snoop in further detail.6The semantics of the ANY-operator can be speci-�ed by the conjunction and disjunction operator. Forexample, the semantics of the type ANY(2, E1, E2,E3) is equivalent to the semantics of the type ((E1 4E2) r (E1 4 E3) r (E2 4 E3)). Therefore we will notconsider the ANY-operator in this paper any more.

In contrast to our model the parameter modesof Snoop can be speci�ed on the level of com-plex event types rather than on the componentevent type level. The parameter contexts de-�ne a �xed combination of the values of thedimensions event instance selection and eventinstance consumption introduced in our model.Thus the con�guration possibilities o�ered bySnoop are limited to these combinations.4.1.2 SAMOSIn SAMOS [Gat94] the semantics of complexevents are de�ned informally. However, a moreprecise de�nition of their semantics can be ob-tained from labeled petri nets which are usedfor their detection. Simultaneously occurringevents are explicitly excluded.SAMOS de�nes the binary event operatorsconjunction (,), disjunction (j), and sequence(;), and the unary operators negation (NOT),�, last and TIMES(n,E). The unary operatorsmust be used in conjunction with a monitor-ing time interval7, denoted as 'IN [start point,end point]'. The start and the end point ofthe interval can be de�ned explicitly by an ab-solute or relative point in time or implicitlyby the occurrence of events of speci�ed eventtypes. If no interval is given the system as-sumes the time between the de�nition time ofthe complex event type and in�nity. Eventswhich mark the monitoring interval of complexevents are not bound to them.The operators � and last are used whenevercomplex events should only be signaled onceduring a given time interval, even if the patternspeci�ed by the corresponding event types oc-curs several times. While the � operator selectsthe oldest occurrence of an event of a giventype the last operator chooses the most recentoccurrence. Events based on the � operatorare signaled as soon as the complex event tobe monitored occurs for the �rst time whileevents based on the last operator are signaledat the end of the monitoring interval.The TIMES operator can be used in di�er-ent variants. Events based on the variant7A monitoring interval can also be de�ned for thebinary event operators. But for these operators it isoptional.10

www.manaraa.com

TIMES(n,E) IN I are signaled each time nevents have occurred during the time inter-val I, events based on the variant TIMES([n1-n2],E) IN I are signaled at the end of I ifevents of the type E occurred between n1 andn2 times in I and events based on the variantTIMES([> n1]; E) IN I are signaled at the endof I if events of the type E have occurred morethan n1 times. The TIMES operator uses thecumulative selection mode, i.e. all events ofthe type E which caused the complex event tooccur are bound to it.For the operators of the event algebra ofSAMOS the event instance selection and con-sumption policies are �xed. But the user hasthe possibility to partly inuence these aspectsby using the operators TIMES, * and last.4.1.3 OdeOde [GJS92, WC96] de�nes its semantics ofcomplex events on a formal level. Its de�nitionis based on event histories (histories) whichcontain a �nite set of events that are totallyordered by their event times. The semanticsof an event type E is de�ned as a mappingfrom histories to histories, i.e. E: histories!histories. The resulting history E[h] containsthose events of h which trigger an event of thetype E. An event type can be NULL, anyprimitive event type a, or a complex event typethat consists of component event types. Thesecan be combined by one of the operators ^, !(not), relative, relative+, _, any, prior andsequence8. Let E and F be event types. Theirsemantics are de�ned as follows:1. E[null] = null for any event typeE, wherenull is the empty history.2. NULL[h] = null.3. a[h] is the maximal subset of h composedof events of the type a, where a is a prim-itive event type.4. (E ^ F)[h] = E[h] \ F [h]5. (!E)[h] = (h - E[h])8Ode de�nes a number of further event operators,that are not considered in this paper.

6. relative(E, F)[h] are the events in h thattrigger events of F . However, only thatparts of h are considered that at each timestart immediately after an instance of Eis detected.Let Ei[h] be the ith event in E[h]. Let hibe obtained from h by deleting all eventswith an event time older than or equal tothe event time of Ei[h]. Thenrelative(E, F)[h] = Si F [hi],where i ranges from 1 to the cardinality ofE[h].7. relative+(E)[h] = S1i=1 relativei(E)[h]whererelative1(E) = E andrelativei(E) = relative(relativei�1(E),E).8. (E _ F)[h] = !(!E ^ !F)[h].9. any denotes the disjunction of all theprimitive event types.10. prior(E, F)[h] = (relative(E, any) ^F)[h].The operator prior speci�es, that an eventof F has to take place after an event of Ehas taken place. These events of E and Fmay - in contrast to the operator relative- overlap.11. sequence(E, F)[h] = (relative(E,!(relative(any, any))) ^ F)[h].The operator sequence speci�es immedi-ately successive triggering of events of thetypes E and F .In Ode [GJS92] the semantics of the event in-stance selection is discussed shortly. The se-lection of event instances consists of two steps:In the �rst step the alternative event instancesequences that ful�l the event instance patternare computed. In the second step the event in-stance selection is performed through querieson the event instance sequence set computedin the �rst step. A detailed description of pos-sible selection strategies as well as their real-ization is postponed to a future paper.11

www.manaraa.com

4.2 Speci�cation of the EventAlgebrasIn this section we will specify the semanticsof the event algebras of Snoop, SAMOS andOde on the basis of our meta-model (for thespeci�cation of further event algebras, suchas ACOOD [Eri93], ADL [Beh95], Chimera[MPC96], NAOS [CC96] see [Zim97]). For eachof these event algebras we will present a tablewhich contains its speci�cation. Each table isorganized as follows.For each operator of an event algebra there isan entry that may stretch over a maximum ofthree rows. The �rst column of each entry con-tains the event type to be speci�ed (notationof the event algebra to be examined, upperrow) and the skeleton of the event type of themeta-model on which the speci�cation is based(notation of the meta-model, lower row). Thesecond column lists the component event typesfor which the subsequent columns contain themodes that must be assigned to them to formthe complete event type of the meta-model.The table for Snoop contains a separate col-umn that speci�es the semantics for each pa-rameter context.We use abbreviations for the di�erent modes:sh for shared, ex for exclusive, in for inside,out for outside, param for parameter, cum forcumulative, comb for combinations, min forminimum and rest for restricted.Whenever the semantics of an event algebra,from our point of view, is ambiguous or irreg-ular we mark it by adding the symbol '?' andusing bold letters for the mode that causes theirregularity.Example 10:Consider the Snoop operator (E1 4 E2) in theparameter context chronicle (see table 3). Thetable should be read as follows:� �rst column, �rst row: (E1 4 E2) is thenotation of Snoop� �rst column, second row: ^ (E1, E2) isthe principal notation in our meta-model� second column, �rst (second) row: E1(E2), means that the occurrence of E1(E2) in the skeleton notation of the meta-

model must be enriched by the speci�ca-tions in column 4 (chronicle).Altogether this results in the following meta-model expression, that is equivalent in its se-mantics to the original notation of Snoop:^ (�rst : exclusive parameter : E1, �rst : ex-clusive parameter : E2).4.2.1 SnoopTable 3 presents the speci�cation of Snoop onthe basis of our meta-model. Let us considersome examples describing some irregularitiesof Snoop that were detected with the help ofour speci�cation presented in table 3 (Furtherexamples can be found in [ZUM97, Zim97]).In these examples the Snoop event types aredenoted by a parameter context followed byan event operator and its operands.Example 11:Consider the event types: E4 := recent E1;E3and E5 := recent NOT(E2)[E1,E3] and theevent instance sequence EIS5 := ei11 ei13 ei23.The sequence EIS5 causes the recognition oftwo events e14 and e24 of E4 represented by ei14(ei11ei13) and ei24 (ei11ei23) but only one event e15of E5 represented by ei15 (ei11ei13).An event type based on the negation opera-tor is an extension of the event type basedon the sequence operator that de�nes thetime interval during which the non-existenceof events is monitored. Thus, in the case ofthe non-occurrence of the speci�ed events, onewould assume that the behavior of these eventtypes is the same. Unfortunately, these eventtypes use di�erent event instance consumptionmodes for their �rst component event type:while the event type based on the sequenceoperator uses the shared mode, the event typebased on the negation operator uses the exclu-sive mode.Example 12:The recent and the chronicle parameter con-texts use di�erent event instance consumptionmodes. While in the recent parameter con-text the event instances are often9 shared, theyare used exclusively in the chronicle parametercontext.9Only terminator events are used exclusively.12

www.manaraa.com

last : first :

last :

recent chronicle continous cumulative

E1 E2

()E1 E2,

E1
E2 first :

cum :

cum :

E1 E2

()E1 E2,

E1 E2
;

()E1 E2,;

last : first : cum :

E1
E2

E1
E2

NOT E2() E1 E3[],

()E1 E2, E3,

E1
E3

last : first :

A ()E1 E2,E3,

()E1 E2, E3,

E1
E3

last : first :

E1

E3

A* ()E1 E2, E3,

E2

last :

?(E1 E2, E3,(,)

first :

rest cum : rest cum :

first :

rest cum :

comb min :

comb min :

comb min :

comb min :

comb min :

comb min :

sh in :

sh in :

sh in :

sh in :

sh in :

sh in :

ex out :

ex param in :

parameter contextsSnoop−ET

Meta−Model−ET

?!;(E1 E2, E3,))

rest cum : ex param

ex param

ex param

ex param

ex param

ex param

ex param

ex param

ex param

ex param

ex param

ex param

ex param

ex param

ex param

ex

ex param

sh

ex param

ex

ex param ex param

ex param

ex param out

ex param

ex param

ex out

ex out

sh in :

sh out

ex param out

ex param out

ex param

ex param

first :

ex param

ex param

ex param out ex param

ex param

ex param

ex param

ex param

ex param

ex param

ex param

ex param

ex param

ex param

first :

sh

sh

sh

ex ?

?

CP−
ET

Figure 3: The semantics of the complex events de�ned in SnoopConsider the event types E3 := recent (E1 4E2) and E4 := chronicle (E1 4 E2) and theevent instance sequence EIS6 := ei11 ei12 ei22.The sequence EIS6 causes the recognition oftwo events e13 and e23 of E3 represented by ei13(ei11ei12) and ei23 (ei11ei22) but only one event e14of E4 represented by ei14 (ei11ei12).Example 13:The event instance consumption mode of the�rst component event type of events based onthe a-periodic operator used in the chroniclecontext is exclusive parameter. Thus, the char-acteristics of the a-periodic operator get lost,as it is signaled only once (for every event in-stance of the �rst component event type).Consider the event type E4 := chronicle A(E1,E2, E3) and the event instance sequence EIS7:= ei11 ei12 ei22 ei32 ei13. The sequence EIS7causes the recognition of only one event e14 ofE4 represented by ei14 (ei11ei12) and not - as onemay expect - three events.Example 14:Let us consider event types based on the a-periodic operator A used in the continuous pa-rameter context. The event instance consump-tion mode of their �rst component event typeis exclusive parameter inside : shared outside,i.e., its instances can only be used once inside

a group but they are shared between di�erentgroups. Thus, instances of the second compo-nent event type occurring after an instance ofthe �rst type are not only associated with thisinstance but also with every older instance ofthe �rst type:Consider the event type E4 := continuousA(E1, E2, E3) and the event instance sequenceEIS8 := ei11 ei12 ei21 ei22 ei32. The sequence EIS8causes the recognition of the events e14, e24, e34,e44 and e54 of E4 represented by ei14 (ei11ei12),ei24 (ei11ei22), ei34 (ei21ei22), ei44 (ei11ei32) and ei54(ei21ei32).4.2.2 SAMOSTable 4 presents the speci�cation of SAMOSon the basis of our meta-model. Let us con-sider some examples of the irregularities ofSAMOS we have noticed through the speci�-cation of its semantics.Example 15:Consider the event type E4 := NOT E2 IN [E1-E3] and the event instance sequence EIS9 :=ei11 ei21 ei12 ei13 ei23. The time interval [E1-E3] canbe instantiated several times, e.g., I1 = [ei11,ei13]and I2 = [ei21,ei23]. As during both time inter-vals an instance of E2 (ei12) occurs, one might13

www.manaraa.com

first :

()E1 E2,

E1
E2 first :

()E1 E2,

E1 E2
; first :

E1
E2

E1
E2

E1 first :

E1
E3

E1
E2

last :

?

ex param

ex param

ex param

ex param

ex param

ex param

ex param

ex param

ex

E1 E2,

E1 E2

E1
E3

E1

E3

E2

? first :

rest cum :ex param

ex param

ex param

sh

ex param

ex param

ex param

E1 E2
; IN E1 E[−]3

()E1 E2,;
1 E2

;*E

()E1 E2,;
1 E2

;last E

NOT E() IN E1 E3 [−]2

[−]1n 2n E()TIMES ,
2

;(E1 E2, E3,))
1n 2n()−

E1

E3

E2
;(E1 E2, E3,))

1n()−

E()TIMES ,
2n[>]

E1

E2

E()TIMES ,
2n

()E1 E, E, 23

sh

first :

ex param

? first :

rest cum :ex param

ex param

ex param

()E1 E, E, (n) 23

? first :

? first :

CPET−Modes

SAMOS−ET

Meta−Model−ET

()E1 E2,;

()E1 E, E, 23
E2

CP−
ET

IN E1 E3[−]

IN E1 E3[−]

IN E1 E3[−]

ex

Figure 4: The semantics of the event operatorsde�ned in SAMOS

expect that EIS9 does not cause an event of E4to occur. But the event detection algorithm ofthe NOT operator speci�ed by a labeled petrinet (see [Gat94], page 110) deletes instances ofE2, and thus ei23 causes the occurrence of anevent of E4.Example 16:Consider the event type E4 := �E2 IN [E1-E3] and the event instance sequence EIS10 :=ei11 ei12 ei21 ei22 ei13 ei23. Again the time inter-val [E1,E3] can be instantiated several times,e.g.,: I1 = [ei11,ei13] and I2 = [ei21,ei23]. Whileboth event instances ei12 and ei22 of E2 occurduring I1, only ei22 occurs during I2. The se-quence EIS10 causes the occurrence of onlyone instance of E4: ei14 (ei12) rather than twoinstances ei14 (ei12) and ei24 (ei22), as one mightexpect.Example 17:Consider the event type E4 := (E1; �E2) IN[E1-E3] and the event instance sequence EIS11:= ei11 ei12 ei22 ei13. The sequence EIS11 causesthe occurrence of two events of E4 (see [Gat94],p. 111).Example 18:Consider the event type E4 := TIMES(2,E2)IN [E1,E3] and the event instance sequenceEIS12 := ei11 ei12 ei21 ei22 ei13 ei32 ei42 ei23. Eventinstances of type E3 invalidate all instances ofE2 which have already occurred. Thus, eventsof type E4 are triggered twice: ei14 (ei21ei22) andei24 (ei32ei42). Therefore, the event instance ei24is not signaled after an even number of eventoccurrences of type E2 relative to the lowerbound of the time interval, as one might ex-pect.4.2.3 OdeTable 5 presents the speci�cation of Ode on thebasis of our meta-model. The semantics of theconjunction and negation operators are quitedi�erent from that of other event algebras:A conjunction of two event types occurs when-ever events of both component event types oc-cur simultaneously. A negation of an eventtype occurs whenever an event of a di�erenttype occurs.14

www.manaraa.com

E1
E2

()E1 E2,

E1
E2

E1

E2

E1

E1

ex param

ex param

ex param

ex param

ex param

ex param

ex param

E1 E2

first :? sh

ex param

CPET−ModesMeta−Model−ET

Ode−ET

E1 E2

()E1 E2,==

relative E1 E2
(),

prior E1 E2
(),

sequence E1 E2
(),

()E1 E2,;

exlast :

! E1

En

E2
()E E, E2 3 n,....,

ex param

()E1 E2,;non−overlap

()E1 E2,;continuous

first :? sh

CP−
ET

E2

E2Figure 5: The semantics of the event operatorsde�ned in Ode5 Comparison of the EventAlgebrasIn the following we will compare the seman-tics of the conjunction, negation and sequenceoperators of the di�erent event algebras withthe help of our meta-model. The disjunction-operator is omitted since it has the same se-mantics in each event algebra. Each other op-erator is represented by a separate table.There is an entry (row) for each specializationof the semantics of an operator in a given eventalgebra. If the same operator can be expressedin several models there will be several entriesin the �rst two columns of a row, separated bya dashed line. If there is no entry for an eventalgebra in a given table this simply means thatthe corresponding operator is not supported bythe algebra. Otherwise, all possible specializa-tions of an operator are listed which impliesthat missing specializations are not supported.The �rst column of an entry de�nes the eventalgebra and the second the event type to bespeci�ed. The other columns contain the spec-i�cation of an event type based on the meta-model. The third column de�nes the skeleton

of the event type of the meta-model on whichthe speci�cation is based. As the skeleton ofmost of the operators is the same, it is listedat the head of the table. The other rows onlycontain information when there are additionalmodes or di�erent skeletons. The remainingcolumns de�ne the modes assigned to the com-ponent event types listed at the head of the col-umn. These columns serve the same purposeas the parameter context columns in the pre-vious tables: they re�ne the skeleton in thatthe appropriate component event type of theskeleton has to be enriched with the speci�ca-tion of the column.Note: In Snoop the same semantics can be ex-pressed by di�erent expressions (as can be seenfrom the �rst row of table 8).
last :

first :

last :recent

chronicle

continous

cumulative

E1 E2

()E1 E2, E1
E2

first :

cum : cum :

comb min : comb min :

sh in : sh in :

ex paramex param

ex outex out

ex paramex param

sh sh

Meta−Model−ETTarget−ET

Name ET
ET CP−ET

Snoop

SAMOS

E1 E2

E1 E2

E1 E2

Snoop

Snoop

Snoop

Ode E1 E2 ()E1 E2,==

first : first : ex paramex param

ex param ex param

E1 E2,Figure 6: The Conjunction Operator6 Related WorkA systematic and profound debate about eventspeci�cation has not yet started. Instead,most papers treat only speci�c aspects of arule model in an isolated manner or concen-trate on the narrow model of a speci�c pro-totype. For example, ACOOD [Eri93], ADL[Beh94, Beh95], Chimera [MPC96], NAOS[CC96], REACH [BBKZ93] and Reex [NI94]are based on the event algebras discussed inmore detail in the previous sections.Other papers that do not directly rely ona speci�c model discuss formal aspects on amore general level (for example [HJ91, Wid92,Zan93, GHJ+93, FMT94, CFPT95, CC95]; foran overview see [PCFW95]). They do not oronly insu�ciently treat complex event speci�-cation. To our best knowledge our paper is the15

www.manaraa.com

last :

cum :

rest cum :

comb min : sh in :

ex paramfirst : ex param

ex param

? rest cum : ex ex param

ex param ex param out

ex paramex param

sh

last : ex

continous

cumulative

()E1 E2, E1
E2

first : ex param

Meta−Model−ETTarget−ET

Name ET
ET CP−ET

Ode

E3

Ode

prior

relative

SAMOS

SAMOS

chronicleSnoop

(E1 E2,)

(E1 E2,)

E1 2E;

;

E1 2E;

E1 2E;

1 2E;*E

SAMOS 1 2E;lastE

Ode (E1 E2,)sequence

Snoop E1 2E;

SAMOS

Snoop E1 2E;

SAMOS

SAMOS

Snoop
recent

Snoop
chronicle
A* ()E1 E2, E3,

A* ()E1 E2, E3,

(E1 E2, E3,(,)
;(E1 E2, E3,))

(E1 E2, E3,(,)
;(E1 E2, E3,))

ex param
ex param

Snoop E1 2E;recent

ex param

ex param

ex param

ex param

rest cum :
ex param

ex param

? first : rest cum :
ex paramex param ex param

IN E1 E[−]3 first :? sh

first : ex param

first : ex

last : ex

[−]1n 2n E()TIMES ,
2

IN E1 E3

IN E1 E
E()TIMES ,

2n[>]

;(E1 E2, E3,))
1n 2n()−

;(E1 E2, E3,))
1n()−

? first :
ex param

ex param

ex param

ex param

first :? sh

exlast :

non−overlap

continuous

first :? sh

3[−]

[−]Figure 7: The Sequence Operator
E1

Meta−Model−ETTarget−ET

Name ET
ET CP−ET

Ode

E3

SAMOS

Snoop

SAMOS

first :

comb min :

comb min : sh in :
ex param in :

ex paramfirst : ex param

ex paramex param

last : ex ex param

last : sh ex param

sh in :

sh out
ex param out

ex param outex param

ex paramfirst : ex param

ex paramex param

first :?

()E1 E2, E3,

E2() E1 E3[],

Snoop
E2() E1 E3[],

cumulative

chronicle

A ()E1 E2,E3,

A ()E1 E2,E3,

cumulative

chronicle

Snoop

Snoop

A ()E1 E2,E3,Snoop
recent

A ()E1 E2,E3,
Snoop continous

Snoop
E2() E1 E3[],

continous

Snoop
E2() E1 E3[],

recent

ex param

ex paramsh? first :

ex param? first :NOT E() IN E1 E3 [−]2

IN E1 E3

E()TIMES ,
2n

ex param! E1
()E E, E2 3 n,...., ex param

[−]Figure 8: The Negation Operator16

www.manaraa.com

�rst one that discusses the semantics of com-plex events in detail.7 ConclusionsIn this paper we have presented the basic con-cepts of a formal meta-model that de�nes thesemantics of complex events. It is based on thethree dimensions event instance pattern, eventinstance selection and event instance consump-tion. The event instance pattern is respon-sible for the speci�cation of the point in timeat which events occur, the event instance se-lection de�nes which events are bound to acomplex event, and the event instance con-sumption determines when events become in-valid, i.e., cannot be considered for the detec-tion of further complex events.In principle, while an event instance patternis associated with an event type, the dimen-sions event instance selection and event in-stance consumption are related to the compo-nent event types of complex event types.The three dimensions are independent in re-spect of their usage, i.e., they can be combinedwithout any restrictions. In particular, theevent instance selection and the event instanceconsumption policies can be chosen separatelyfor each component event type of a complexevent type. Moreover, our model allows for si-multaneously occurring events.The model presented in this paper contributesto the ongoing work in the area of activedatabase systems in several ways:1. We developed a exible meta-model whichcan be used to specify the semantics ofcomplex events de�ned in other rule mod-els.2. This model can be used to compare thesemantics of complex events de�ned in ex-isting rule models.3. Our model can be used as a basis for thede�nition of new event algebras.4. The semantics of our model is de�ned for-mally. Thus, di�erent interpretations ofthe semantics of a given complex event arenot possible.

5. The meta-model helps in gaining a solidunderstanding of the basic properties ofcomplex events and the interrelationshipsbetween their components.8 AppendixThe syntax of a complex event type is de�nedas follows:< CET > ::= < pattern >< pattern > ::= [< op mode >] < OP >(< CPET list >)< CPET list > ::= < CPET > j< CPET > , < CPET list >< CPET > ::= [< opd mode >] < ET >< ET > ::= < PET > j < CET >< OP > ::= == j ; j ^ j _ j :< op mode > ::= [< cc mode > :][< coup mode > :][< trav mode > :]< cc mode > ::= non-overlappingj overlappingj [default : overlapping]< coup mode > ::= continuous j non-continuousj [default : non-continuous]< trav mode > ::= left-to-right j right-to-leftj [default : left-to-right]< opd mode > ::= [< par select > :][< cosu > :] [< delimiter > :]< par select > ::= �rst j last j cumulativej restricted cumulativej combinations [minimum]j [default : last]< cosu > ::= inside < cosu mode > :outside < cosu mode >j < cosu mode >< cosu mode > ::= exclusive j sharedj exclusive parameter j[default:exclusive parameter]< delimiter > ::= (< integer >) j (< range >)< range > ::= < integer > - < integer > j< integer > - j - < integer >The de�nition of the syntax of a complex eventtype (CET) reects the three dimensions of thesemantics of a complex event:The event instance pattern is de�ned by anoperator (op), an operator mode (op mode) anda list of component event types (CPET list)if necessary supplemented by a delimiter. Acomponent event type (CPET) can be a com-plex or primitive event type (PET). The eventinstance selection is de�ned by the modes17

www.manaraa.com

par select and trav mode while the event in-stance consumption is de�ned by the modecosu.References[BBKZ93] H. Branding, A. Buchmann, T. Kudrass,and J. Zimmermann. Rules in an OpenSystem: The REACH Rule System. InN.W. Paton and M.H. Williams, editors,Rules in Database Systems (RIDS-93),First Int'l Workshop, Edinburgh, pages111{126, 1993.[Beh94] H. Behrends. An Operational Semanticsfor the Activity Descpription LanguageADL. Technical Report TR-IS-AIS-94-04,Universit�at Oldenburg, June 1994.[Beh95] H. Behrends. Beschreibung ereignis-gesteuerter Aktivit�aten in daten-bankgest�utzten Informationssystemen.Dissertation TR-IS-AIS-95-03, Universityof Oldenburg, Germany, April 1995.[CC95] Thierry Coupaye and Christine Collet. De-notational Semantics for an Active RuleExecution Model. In Timos Sellis, edi-tor, Rules in Database Systems (RIDS-95),Second Int'l Workshop, Athens, Greece,pages 36{50, September 1995.[CC96] C. Collet and T. Coupaye. Compos-ite Events in NAOS. In R. Wag-ner and H. Thoma, editors, Proc. 7thDEXA, Zurich, Switzerland, pages 475{481, September 1996.[CFPT95] S. Comai, P. Fraternali, G. Psaila, andL. Tanca. A Uniform Model to Ex-press the Behaviour of Rules with Dif-ferent Semantics. In M. Berndtsson andJ. Hansson, editors, First Int'l Workshopon Active and Real-Time Database Sys-tems (ARTDB-95), 1995.[CKAK94] S. Chakravarthy, V. Krishnaprasad, E. An-war, and S.-K. Kim. Composite Eventsfor Active Databases: Semantics, Contextsand Detection. In Proc. 20th Very LargeData Bases, pages 606{617, October 1994.[Day95] U. Dayal. Ten years of Activity in Ac-tive Database Systems: What Have WeAccomplished? In M. Berndtsson andJ. Hansson, editors, Proc. 1st Intl. Work-shop on Active and Real-Time DatabaseSystems, Skoevde, Sweden, pages 3{22,June 1995.[DBM88] U. Dayal, A. Buchmann, and D. McCarthy.Rules are Objects Too: A KnowledgeModel For An Active, Object-Oriented

Database System. In 2nd Int'l Work-shop on Object-Oriented Database Sys-tems, pages 129{143, September 1988.[DGG95] K. Dittrich, S. Gatziu, and A. Geppert.The Active Database System Manifesto:A Rulebase of ADBMS Features. InTimos Sellis, editor, Rules in DatabaseSystems (RIDS-95), Second Int'l Work-shop, Athens, Greece, pages 3{17, Septem-ber 1995.[Eri93] J. Eriksson. CEDE: Composite EventDEtector In A Active Object-OrientedDatabase. Master Thesis University ofSk�ovde, 1993.[FMT94] P. Fraternali, D. Montesi, and L. Tanca.Active Database Semantics. In Proc. of the5th Australasian Database Conf. (ADC),Christchurch, New Zealand, pages 195{212, January 1994.[Gat94] Stella Gatziu. Events in an Active, Object-Oriented Database System. Phd-Thesis.Dr. Kovac, November 1994.[GHJ+93] S. Ghandeharizadeh, R. Hull, D. Jacobs,J. Castillo, M. Escobar-Molano, S. Lu,J. Luo, C. Tsang, and G. Zhou. On Im-plementing a Language for Specifying Ac-tive Database Execution Models. In Proc.19th Very Large Data Bases, pages 441{454, October 1993.[GJS92] N.H. Gehani, H.V. Jagadish, andO. Shmueli. Composite Event Speci-�cation in Active Databases: Model andImplementation. In Proc. 18th Very LargeData Bases, pages 327{338, October 1992.[Gur94] Y. Gurevich. Evolving Algebra 1993: Li-pari Guide. Speci�cation and ValidationMethods, 1994. E. B�orger (ed.), OUP, Ox-ford.[HJ91] Richard Hull and Dean Jacobs. Lan-guage Constructs for Programming ActiveDatabases. In Proc. 17th Very Large DataBases, pages 455{467, September 1991.[Kri94] V. Krishnaprasad. Event Detectionfor Supporting Active Capability in anOODBMS: Semantics, Architecture andImplementation. Master's thesis, Univer-sity of Florida, 1994.[Mis91] D. Mishra. Snoop: An Event Spec-i�cation Language for Active DatabaseSystems. Master's thesis, University ofFlorida, 1991.[MPC96] R. Meo, G. Psaila, and S. Ceri. CompositeEvents in Chimera. In Proc. EDBT, Avi-gnon, France, pages 56{76, March 1996.[NI94] W. Naqvi and M. Ibrahim. EECA: AnActive Knowledge Model. In Proc. 5thDEXA, Athen, Greece, pages 380{389,September 1994.18

www.manaraa.com

[PCFW95] Norman W. Paton, Jack Campin, Al-varo A.A. Fernandes, and M. HowardWilliams. Formal Speci�cation Of Ac-tive Database Functionality: A Sur-vey. In Timos Sellis, editor, Rules inDatabase Systems (RIDS-95), Second Int'lWorkshop, Athens, Greece, pages 21{35,September 1995.[WC96] J. Widom and S. Ceri. Active DatabaseSystems. Morgan Kaufmann Publishers,1996.[Wid92] J. Widom. A Denotational Semantics forthe Starburst Production Rule Language.ACM record, 21(3):4{9, September 1992.[Zan93] C. Zaniolo. A Uni�ed Semantics for Activeand Deductive Databases. In N. W. Pa-ton and M H. Williams, editors, Rules inDatabase Systems, Edinburgh 1993, pages271{287, 1993.[Zim96] D. Zimmer. A Formal Metamodel forthe De�nition of the Semantics of Com-plex Events. C-LAB Report 29, C-LAB, F�urstenallee 11, 33102 Paderborn,Germany, http://www.c-lab.de, December1996.[Zim97] D. Zimmer. Ein Meta-Modell f�ur dieDe�nition der Semantik von komplexenEreignissen in Aktiven Datenbanksyste-men. PhD thesis, Universit�at Paderborn,1997. To be published.[ZUM97] D. Zimmer, R. Unland, and A. Mecken-stock. A General Model for Event Spec-i�cation in Active Database ManagementSystems. In Proc. 5th DOOD, Montreux,Switzerland, 1997. To be published.

19

