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Abstract

Active database systems have been developed for ap-
plications needing an automatic reaction in response
to certain conditions or events. Events can be simple
in nature or complex. Complex events are built from
simpler ones with the help of operators of an event al-
gebra.

While numerous papers propose extensions of a given
set of event operators only very few address the foun-
dations of the semantics of complex events. As a conse-
quence most proposals mix different, concepts (aspects)
of complex events and offer event operators as the only
means to control their semantics. This leads to pecu-
liarities as aspects are not always handled uniformly by
operators. Sometimes operators have other semantics
than expected. Moreover operators of different alge-
bras which, at first glance, look the same may have
different semantics.

We developed a formal meta-model for complex events.
Tt divides the semantics of complex events into elemen-
tary, essentially independent dimensions. The result-
ing elementary building blocks can be used

e to gain a solid understanding of the basic prop-
erties of complex events,

e to detect peculiarities in existing event algebras
such as those mentioned above,

e to compare existing event algebras and

e to design a consistent and clear event algebra.
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1 Introduction

Rules are used in Active Database Sys-
tems to monitor situations of interest and
to trigger a timely response when these sit-
uations occur. Rules are useful for a num-
ber of database tasks: They can enforce in-
tegrity constraints, compute derived data, con-
trol data access, gather statistics, and more.
In this paper ECA-Rules (Event-Condition-
Action-Rules) are considered. The condition
of a rule is evaluated when its triggering event
occurs, and if the condition is satisfied, the
rule’s action will be executed.

Examples of triggering events, denoted by ¢;,
are the execution of update or retrieval opera-
tions provided by the Database Manipulation
Language (DML) of the underlying database
system. Such events are pre-defined and are
called primitive events. To react to more so-
phisticated situations, complex events have
been introduced. They are defined from sim-
pler ones by using operators of an event al-
gebra.

For instance, events based on a sequence op-
erator, denoted by eq;e3, are triggered when-
ever ez occurs, provided that e; has already
occurred. Another example is a negation op-
erator that can be used to define events, de-
noted by ey;—eq;e3, which are triggered when-
ever ey;e3 occurs, provided that ey did not oc-
cur between the occurrences of e; and e;.

In general, complex events are triggered by a
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set. of primitive and/or complex ’component’
events which, in addition, must often occur in
a predefined order. The events that cause a
complex event to occur are bound to it and
are used for the definition of its parameters.
The parameters of an event are used to transfer
information about the event to other parts of
the rule’s implementation. Sometimes several
primitive and/or complex component events
may be available for binding to a complex
event and a selection must be made.

We have developed a formal meta-model based
on Evolving Algebras [Gur94], which defines
the semantics of complex events. In this pa-
per we informally present the basic concepts
of this meta-model (for a complete and for-
mal definition see [Zim97]). The meta-model
is based on the three essentially independent
dimensions event instance pattern, event
instance selection and event instance con-
sumption', which can he further split into
(sub)dimensions. The event instance pat-
tern is responsible for the specification of the
point in time at which events occur, the event
instance selection defines which events are
bound to a complex event, and the event in-
stance consumption determines when events
become invalid, i.e., they cannot be considered
for the detection of further complex events.

In most event algebras, such as those defined
in HIPAC [DBMS8g], SAMOS [Gat94], Ode
[GJS92], Chimera [MPC96] and NAOS [CC96],
event operators are the only way to specify
these different dimensions. This leads to a con-
fusion of concepts that makes the understand-
ing of an inherently complex area even more
difficult. We will show that currently there are
a number of peculiarities and irregularities in
existing event algebras that can be attributed
mainly to these confusions.

For instance, consider the case where event ey,
to be triggered before e3, is triggered twice. In
Snoop [Mis91, CKAK94], as we will show later,
this sequence causes eq;e3 to be triggered twice
while ey;7ey;e3 is triggered only once.

"The terms ewvent consumption or consumption
mode have been used previously in the literature (see,
e.g., [BBKZ93, Day95, DGGY5, Gatd4d]).
in these papers the authors’ essential meaning corre-
spondsutoraspectsyofourndimensionmevent instance se-

However,

lection and thus seems to be misleading.

The literature provides relatively few studies
of the subdivision of the semantics of complex
events. In Snoop [Mis91, CKAK94], param-
eter contexts were introduced?. They are re-
sponsible for the determination of the set of
events that are bound to complex events. For
example, SAMOS [Gat94] copes with the se-
mantics of this by introducing additional oper-
ators called "7, "last” and TIMES, which select
the oldest (**7), the most recent event ("last’) or
several events ("TTMES’) out of a set of events.

As will be shown in this paper, our meta-model
contributes to current research from several di-
rections:

o It helps to gain a solid understanding of
the basic properties of complex events.

o It helps to detect peculiarities in existing
event algebras such as those mentioned
above.

e It can be used to compare existing event
algebras, and

e it provides a suitable basis on which to de-
sign a consistent and clear event algebra.

In the following section we introduce some ba-
sic definitions that are used to define our meta-
model described in section 3. In the next two
sections we will use our meta-model for the
specification and comparison of the semantics
of existing event algebras. The semantics of
the event algebras defined in Snoop [CKAK94],
SAMOS [Gat94] and Ode [GJS92] are specified
in section 4 and compared to each other in sec-
tion 5. Section 6 considers related work, and
section 7 concludes the paper.

2 Basic Definitions

This section introduces the basic definitions
needed for further discussion of our concepts.
The formal and complete description of our
meta-model can be found in [Zim97].

In principal, the data and transaction models
of the underlying database system are orthogo-

Parameter contexts were later used in ACOOD
[Eri93] and in an extended version in ADIL [Beh95].
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nal to the functionality of ECA-rules and thus
will not be considered in our model.

Definition 1:

An event is an indicator for the occurrence of
a situation which may require an (automatic)
reaction from the system. It is defined to be an
instantaneous, atomic occurrence at one point
in time (i.e., it happens completely or not at

all).

A call to a database operation like the manipu-
lation or retrieval of some data is an example
of an event.

Definition 2:

For this paper we assume an equidistant dis-
crete time domain having 0 as the origin
and consisting of points in time represented by
non-negative integers.

Definition 3:

In database systems a concrete event is repre-
sented by an event instance (FT), which con-
tains the necessary information about the spe-
cific event.

An event type (ET) describes the common
essentials of a sufficiently similar set of event
instances on a more abstract level. Tt speci-
fies the occasions on which events of the type
occur, defines the parameters of the event in-
stances, and lays down the impact of their oc-
currences on the occurrences of other events.

Example 1:

An update operation on some data item z may
be invoked several times. In this case the event
type specifies that each call of the update oper-
ation triggers an event of its type. The actual
invocation of the update operation is an event
and this event is represented internally within
the system by an event instance.

Definition 4:

An event instance contains parameters
such as the identification of its event type, the
event occurrence time, the actual set of event
instances that caused this event instance to oc-
cur and that are bound to it and other type-
specific parameters.

In general, events should be permitted to oc-
cur simultaneously. Some models (see [Gat94,
CKAK94]) exclude such a behavior. However,
we believe that such restrictions are not ade-
quate as one single event may ftrigger a num-

ber of other (complex) events, which may even
Thus, different event,
instances may get the same event occurrence

be of the same type®.

time.

Definition 5:

There are a number of elementary event types,
called primitive event types. Primitive
event types are commonly classified into ei-
ther database or temporal or external event
types. Database event types correspond to such
database operations as data manipulation or
On the other hand,
temporal event lypes specify points in time ei-
ther absolutely (e.g., "at 5 o’clock on the 5th

of November 19977), relatively (e.g., 75 mi-

transaction operations.

nutes after calling the update operation on the
data item 2”) or periodically (e.g., "every b se-
conds™). Faxternal event types represent events
that occur outside the database, or even out-
side the computer system, and are communi-
cated (signaled) to the database system by spe-
cial database system operations.

Applications sometimes need to react to more
complex situations than those expressible by
primitive events. For this reason, complex
events, which consist of a combination of prim-

itive events, are introduced.

Definition 6:

A complex event type can be constructed
by combining simpler event types with the
help of the operators of an event algebra.
The definition of a complex event type (recur-
sively) consists of an operator (op) that com-
bines a number of primitive and/or complex

4. These types are called compo-

event types
nent event types while the constructed com-
plex event type is called the parent event
type.
be used to construct even more complex event

Complex component event types can

types. The recursive construction of (complex)
event types leads to an event type hierarchy
where the primitive event types constitute its
leaves and complex component event types its
inner nodes.

The question of whether the component events

3n [CKAK94] a so-called parameter context, contin-
wous was introduced by which a single event can trigger
multiple complex events of one type.

“Note, that this complex event type can be used in
the definition of an even more complex event type.
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of a complex event are triggered by different
transactions or the same transaction does not
have any impact on the design of the basic con-
cepts of our meta-model®. Tt is, in principal,
orthogonal to the event semantics considered
in this paper and will therefore not be dis-
cussed here in further detail.

We assume that event types are independent of
each other, i.e., events or event instances of a
component event type, which is used by several
(parent) event types, are available for all these

types.

For the detection of complex events it is impor-
tant to know which events have occurred and
in what order. To describe this information we
introduce event instance sequences.

Definition 7:

An event instance sequence (F[5) is a par-
tially ordered set of event instances that have
occurred in the system. The order of the event
instances corresponds to the order of their
event occurrence times. It can be differentiated
between instance-oriented and type-oriented
event instance sequences. Instance-oriented
event instance sequences are used in com-
plex event instances to represent the compo-
nent events that caused this complex event to
occur. Type-oriented event instance se-
quences are maintained for each event type
and contain only those component event in-
stances of the system that are relevant to the
detection of complex events of this type.

Notations:

For the following discussions we use capitals
to denote event types and small letters to de-
note events or event instances. We will use
F; to denote an event type, F;; to denote its
component, event types and FI1S% to denote
its event instance sequence. We will use e}
to denote the events of F;, ei? to denote the
event instance representing i and E1S“ to
denote the event instance sequence of ei?. The
superscript index s reflects the order in which
the events or the event instances of F; occur.
The event instances of an event instance se-
quence are denoted in the order of their times-
tamps. The event instances belonging to an

instance-oriented event instance sequence will

S Fhisiquestiongisghowevergimportant for the design
of the rule execution model.

sometimes simply be listed in brackets.

Example 2:

Consider a complex event that is to be signaled
whenever an event of type F; occurs before an
event of another type Fy. Such complex events
are represented by an event type Fs, which is
based on the event types F; and Iy combined
by a sequence operator. The sequence operator

7,9

is denoted by ’;
=3 (E17 E?)

Definition 8 :
The event occurrence times of the event in-

and the event type F3 by Fj

stances belonging to F 15 of a complex event
instance e} define the time interval during

The

event instances whose event occurrence times

which the detection of €7 takes place.

are equal to the start of the time interval rep-
resent the initiator events (initiators) of 7.
The event instances whose event occurrence
times are equal to the end of this time interval
represent the terminator events (termina-
tors) of ¢f. The events which are neither ini-
tiators nor terminators are the intervenors of
e?. While initiators mark the beginning of the
detection process of complex events, termina-
tors mark the occurrence of complex events.
The occurrence time of the terminators of a
complex event instance defines its occurrence
time. For simplicity we assume that an every
event has only one initiator and one termina-
for.

We assume that primitive events are detected
by the system, that the system generates the
corresponding instances, and that the order of
the event occurrence times of these instances
reflects the order in which the events they rep-
resent have occurred. Whenever a primitive or
complex event instance is detected it is inserted
into the type-oriented event instance sequences
of its parent event types.

3 The Meta-model

For reasons of readability this section presents
the basic dimensions of the semantics of com-
A de-
tailed and formal definition can be found in
[7im97].

and their event instance sequences F TS5,

plex events on a more informal level.

We focus on single event types F;
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3.1 Division of the Semantics

of Complex Events into Di-
mensions

As can be deduced from existing event alge-
bras, there are in essence three questions that
must be answered for the semantics of complex
The
examples of the following questions rely on the

T2 1
1 €11 €13 €1y

events to be defined in sufficient detail.

event instance sequence /15" := ei el

2 3 2

€1y €1y €15,

Question 1 (event instance pattern):
What concrete sequences of ‘component’ event
instances (patterns) trigger a complex event?

The answer to this question depends on a num-
ber of aspects: the types of instances belonging
to a sequence, the number and order of their
occurrence, and the non-existence of instances
of a type, etc. For example, the event instance
sequence K 1S' triggers an event e} of event
type Fq := ;(F1, Fa, F3). However, it does
not trigger an event of a type which requires
that no instances of Fs are allowed to occur
between the instances of F; and Fs.

The fact that a complex event is triggered does
not mean that it is automatically clear which
component event instances are associated with
this complex event. That is, it may not be
clear which component event instances are to
be used in the condition and action parts of the
rule that are triggered by the complex event.
There may be a choice as to which event is
to be chosen as input for the execution of a
rule out of a number of instances of the same
event type that occurred while the pattern of
the complex event was being satisfied. So the

question is:

Question 2 (event instance selection):
What concrete event instances should be cho-
sen?

The event instances that can be accessed by
the triggered rule are defined by the event in-
stance sequence of the complex event instance
which triggered the rule. In general, there are
several possibilities for its definition. Consider
the event e} of Fj triggered by FIS'. The

event instance sequence of ei) can bhe defined

A GGl Gl ) OF{ GGGl Oti( €11 €17 €1 €15
ery €13) or any other valid combination.

Question 3 (event instance consumption):
What instances are exclusively consumed by
a complex event instance, i.e., what instances
become unavailable for further use after they
were used by this complex event instance?

For example, event instances of type F4 may
consume the necessary instances of type F,
and Fy while they preserve instances of Fs.
Thus, two events e} and €2 of F; may be trig-
gered by FIS', where ei} contains the event

1 2 2 2

. P o g
instance sequence (ei, eiy e15) and eif (e} ers

2
eiz).
Fach question addresses a different dimension

We will call these
dimensions event instance pattern, event in-

of an event specification.

stance selection, and event instance consump-
tion. In the following we will concentrate on
the semantics of each dimension; the complete
syntax is listed in the appendix.

3.2 Semantics of the Dimensions

3.2.1 Event Instance Pattern

The event instance pattern of an event type
F; describes at an abstract level the event in-
stance sequences £/ 1S that will trigger event
instances of F;. Tt must consider four aspects.

Example 3:
Consider the event instance sequence [/15? :=

SERUNC B BN B ,
€ry €] €ly €ly €15 and the event types Fy :

s (Fh, B, Fs), Fs =5 (Fh, Fy) and Fg =
(Fs, F5).
The event type F, specifies that event in-

stances of the types Fy, Iy and F3 must occur
in the order implied by the sequence operator
in the definition of Fy (type and order).

An event e} of type F4 will be triggered as

SOON as 6’7% OCCUTS.

However, the initial time
interval that belongs to ei} starts with es] and
terminates with es2. Within this time interval
there are two instances of event type Fy (ei;
and ei?) and two instances of event type Fs
(eiy and ei3). Tt has to be clarified as to how
many of these instances are necessary at least
and at most to trigger an event of type K4
(repetition).

In the event type Fjs it is specified that first
an instance of type F; has to occur and

then an instance of type Fy. However, it
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remains unclear whether these event instances

must not be interrupted by any other event

instance (tightly coupled), e.g., eil

occur between ei] (or ei7) and eiy or arbitrary

must not

other event instances can occur between the
instances of Fy and Fy (loosely coupled), e.g.,

ery can occur between ei) (or eif) and ei)

(coupling).

During the detection of an event e! of Fs
(initiated by e} or €7 and terminated by e}) an
event e} of Fs occurs. Now, the event occur-

rence time of the instance e}

corresponds to
that of eib. Thus, the event occurrence time
of ei} is older than that of eil, but younger
than that of the initiator of e} (e] or €7). The
type Fg must specify whether it allows such

concurrency (concurrency).

Type and Order

The event types whose instances must (or must
not) occur in an event instance sequence, and
the restrictions concerning their order (if there
are any), are defined by an event operator and
its component event types.

Our model provides the following basic set of
operators:

The ==-operator (simultaneous operator)
requires that instances occur simultaneously,
i.e., their occurrence time is the same; the ;-
operator (sequence operator) requires that
instances occur in a specified order; the A-
operator (conjunction operator) requires
that a number of instances occur in any or-
der; the V-operator (disjunction operator)
requires that at least one of the specified in-
stances occurs; and the —-operator (negation
operator) requires that the given instance(s)
should not occur in a given period or interval.

Periods are specified in the form of event
instances which mark the beginning and end
of the time interval being considered for
evaluation. The negation operator only makes
sense in conjunction with a period during
which the non-occurrence of event instances
is monitored. Thus, the first operand of the
negation operator specifies the beginning and
the last one specifies the end of the period
during which the non-occurrence of the in-
stances of the 'inner’ types is to be monitored.

Repetition

For every component event type F;; a delim-
iter may be specified. It restricts the number
of event instances of F,;; which must occur

If no

delimiter is given, one or more instances of a

to satisfy the event instance pattern.

An upper and/or a lower
Thus,

the number of event instances required for an

type must occur.
bound may be given as a delimiter.

event instance pattern may be restricted to
a range of numbers or even to a particular
number.

Coupling and Concurrency

So-called operator modes can be used to
define the coupling mode and the concur-
rency feature. The mode (coup mode) de-
fines whether event instance patterns may be
interrupted by event instances not relevant
to the event detection (non-continuous), or

The

mode (cc mode) is used to define whether the

whether they may not (continuous).

time intervals associated with the event in-
stances which cause a complex event to occur
may or may not overlap (overlapping versus
non-overlapping).

3.2.2 Event Instance Selection

FEvent instance selection is responsible for
the construction of instance-oriented event in-
stance sequences, i.e., it determines what event
instances are taken from the type-oriented
event instance sequence KI1S% to form the
event instance sequence K 15% . This selection
is performed individually for each component
event type F;; and it is quite natural to se-
lect at least all those instances that caused the
complex event to occur.

Example 4:
Consider the event instance sequence [/15% :=

SIS R D SIS S, Sy —
€1y €ly €17 €15 €1y €1y €ls, the event type [y =

; (K1, Fa, F3) and the event e} of K, which is
triggered by F TS

Let us assume that the instances ei? and e}
have already been selected for the types F; and
F75. Thus, we will focus on the selection of in-
stances of type Fs. Consider the four event

instance sets: (1) (er] ei3 eil), (2) (el eiy i),
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(3) (€17 €13 eriy eiy) and (4) (eiy ei] €1 1y €14).
While sets (1) and (2) contain only one in-
stance of Fy, sets (3) and (4) contain several
instances. Set (1) contains the oldest instance
of Fy which, together with ei? and edl, fulfills
the event instance pattern of F,, while set (2)
Note that
the selection of event instances depends on in-

contains 1ts most recent instance.

stances that were already selected: if we had
chosen ei] instead of €17, the instance ei) would
be the oldest instance of Fy that could be se-
lected. Set (3) contains only instances which
occurred between the selected instances of Iy
and Fs, and thus takes the event instance pat-
tern into account, while set (4) contains every
instance of Fs.

The selection strategies can be classified ac-
cording to whether only the minimum num-
ber of event instances required by the delim-
iter of F;; is selected (minimum instance set-
oriented strategy) or a greater number is se-
lected (cumulation-oriented strategy). In the
most extreme case, the cumulation strategy
would select the whole set of event instances

of F;; belonging to ETS".
First (last)

oriented selection strategies.

are minimum set instance-

These always
select the set of instances with the old-
est (youngest) timestamps. One cumulation-
selection cumulative

oriented strategy is

which selects the complete instance set of
Ei]‘.
strategy restricted cumulative chooses only

The other cumulation-oriented selection

those instances of F;; that are considered by
the event instance pattern of F;.

To obtain a unique solution one has to define
the order in which event instances must be col-
lected from the given event instance sequence:

Example 5:

Let us consider the event type F, :=; (last :F;,
first :Fy, F3) and the event sequence FET15?.
Since ei} had triggered the recognition of event
ey of Fg4, it is the terminator instance of the
time interval assigned to ei}. However, the ini-
tiator instance of e7) is not yet clear. Of course,
it must be an instance of ;. However, which
one should be chosen: e} or ei? or ei}?

If the event type sequence were traversed from
right to left, i.e., first the correct instance of
event type Fjs is identified (which is, of course,

trivial) then the instance of Fy and finally the

instance of Fy, we would have to choose eil,

1
29

If we traversed the event type sequence in

iy, and ei].

the opposite direction, we would first have to
choose ei} since it represents the last occur-
rence of an event of F; in F15%. However, this
would not lead to a legal solution because the
time interval specified by the initiator instance
er? and the terminator instance eil does not in-
clude an instance of F,. Therefore, we have to
backtrack. This means that first or last have
to be interpreted as first or last legal instance
of the given type. The next possibility would

be ei}.

The interval spanned by ei and e}
contains ei2 which is not the first instance of
Iy, but is the first in the interval spanned by
ei? and eik. Therefore, ei?, ei2, and eil would
be the correct solution if left to right traversal
were chosen.

Thus, the result of the event instance selection

depends on the order of the traversal.

To summarize, we must first specify the order
of traversal of the time interval that belongs
to a concrete event instance of an event type,
either from left-to-right or from right-to-left.
The corresponding event instance sequence is
then traversed in this order and the first legal
solution that is identified is the correct one.

Here the semantics can be controlled by the op-
erator mode trav mode that can be either left-

to-right (default mode) or right-to-left.

3.2.3 Event Instance Consumption

FEvent instance consumption defines the impact
of the occurrence of events of a complex event
type I; on the availability of event instances of
its component event types for the subsequent
detection of further events of type F;. The
set, of event instances that is considered by the
detection of events of the type F; is defined
by the event instance sequence FI1S% . Thus,
event instance consumption defines the set of
event instances that are deleted from FTS%:
whenever an event e occurs.

Example 6:

Consider event type Fs:= (last :Fy, first :F)
and its event instance sequence F1S" := ei]
er7 ey ei. With the occurrence of eil, an in-
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stance er} is generated with the event instance
sequence 157 which contains the instances
er7 and eiy. Now let us assume that an event
instance ez of type Fy is consumed if it is used
in an event instance sequence of event e13. The
occurrence of ei} may cause the deletion of (1)
e} or of (2) ei} and ei} or (3) no deletion may
occur. Dependent on this result, er5 will (143)
or will not (2) trigger another event e of Fs.
Tf it is triggered, ei2 may be considered to be

caused by the event instance sequence (ei} ei3)

(3) or (eiy ei3) (1).

We distinguish three different consumption
modes that can be specified individually for
each component event type. The shared mode
The
exclusive parameter mode removes all in-
stances of F;; from E1S" that belong to the
event instance sequence of an instance e (1).

does not delete any instance of F;; (3).

The exclusive mode deletes all instances of
F;; from ETS" that occur before the termina-

tor instance of e (2).

If the same component event type F;; is
used several times in the definition of F;, the
strongest consumption mode will dominate the
weaker ones.

3.3 Event Groups

A terminator instance can trigger the recogni-
tion of several events of its parent type if it
is used in the shared mode. All such events
(event instances) of the same event type F;
which are triggered by the same terminator

form an event group.

3.3.1 Event Instance Selection

To avoid infinite looping (e.g., by infinitely
constructing event instances from the same ba-
sic event instances) different event instances
of the same type must differ in that they are
not allowed to exclusively use the same (basic)
event instances.

Example T7:
Consider the event instance sequence £ 15% :=

q w4 o
ery €1y €1y ely el eis eiy and the event type

Fogim i psmandiaseshiaredy - F3 ). The oc-

currence of ers will frigger a number of events

of type K4, depending on the modes assigned
to Ky and F,. let us assume that Fs has the
modes first : exclusive parameter, I)y is either
first : shared (the resulting parent event type is
denoted by Fs), last : shared (Fg), or restricted
cumulative : shared (F7). Figure 1 presents the

semantics of these event types.

“ 0 [ [ |
s 1.
(E'” (1 M [ |
L I |
01 mm ]
omm___ I |
™0 [ [ |
B
[ 1 N
[l M [ |
[l 1 N
1 M [ |
[l 1 n
1 N

: Time interval over which the complex event is detected

D * Initiator . : Terminator D  Intervenor

Figure 1: Event Instance Selection for Event
Groups

This example shows that the event instance
selection modes introduced above are not suit-
able for the definition of event types that be-
have like the event type Fg (see figure 1). The
instances of the event group of Fg consider all
those event instance sets that contain exactly
one instance for each component event type.

To support the semantics here, the event in-
stance selection modes combinations and
combinations minimum are introduced. If
one of these modes is used for a component
type F;; the different instance sets of F;; are al-
ternately used and combined with the event in-
stance sets of the other component event types
to form event instance sequences of the event
instances belonging to a group. While the
mode combinations minimum defines that
only the minimum number of event instances
required by the delimiter of F;; are taken into
account, combinations does not impose this
constraint, i.e., it can also consider larger sets
of event instances.

Note that these modes only make sense if they
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are used for event types F; whose events share
their terminator events.

Example 8:

The event type Fg, the behavior of which is
shown in figure 1, can be defined as Fg := ;
(combinations minimum : shared : Fy, combi-

shared : Fy, shared : Fs3).

nations minimum :

3.3.2 Event Instance Consumption

Example 9:
Now consider the event type K5 defined in ex-
ample 7 and the event instance sequence F75*

extended by er} ei.

Figure 2 shows the se-
mantics of 5. FEvery pair of events of Fy and
3 will subsequently trigger an event of K.
The event instance consumption modes do not
offer the possibility of distinguishing between
the availability of event instances inside and
outside a group. Thus event instances that are
shared by instances cannot be protected from

being shared by other groups as well.

AL S B T
O 0 |
% [ 0 n
[l 0o nm
—— : Time interval over which the complex event is detected
D * Initiator l : Terminator D  Intervenor

Event Instance Consumption for

Figure 2:
Event Groups

To cope with the semantics, we introduce the
domains inside a group (inside) and outside a
group (outside). They can be used in conjunc-
tion with the consumption modes and define
the availability of event instances only inside
or outside a group (as in figure 2).

The event instance consumption for the out-
side domain is applied to the union of the
event instance sequences of the event instances
belonging to the same group.

3.4 Dependencies between the
Dimensions

The dependencies between the dimensions of
the meta-model become clear when we look at
the.event-detectionprocessed-for an event type

Eii

(1) E_i.event_instance_pattern()

(2) ei := E_i.new_instance;
(3) ei.EIS := E_i.event_instance_selection();
(4) E_Li.EIS := E_i.event_instance_consumption(ei.EIS);

This algorithm is executed each time an event
instance is inserted into FI1S%:.

In the first step, it is determined whether the
event instance sequence of F; fulfills its event
If the pattern is ful-
filled a new event instance e is generated (2).

instance pattern (1).

Next, its event instance sequence is computed
(3). Finally, the event instances that were con-
sumed by ei are deleted from the event instance
sequence B T1S" (4).

Thus, the dimensions of the meta-model are
not independent. However they are orthogo-

nal, i.e., modes of different dimensions can be

?
combined without any restrictions.

4 Specification of Existing
Event Algebras

In this section the meta-model is used to spec-
ify the semantics of some of the most sophis-
ticated event algebras presented in the litera-
ture. In the first section of this chapter we will
define the semantics of some event algebras. In
the second section for each event algebra, the
semantics are first described in terms of our
meta-model, then some irregularities revealed
by our meta-model are discussed.

4.1 Semantics of the Event Al-
gebras
4.1.1 Snoop

Snoop has been developed at the University
of Florida. The concepts of Snoop have been
implemented in a prototype called Sentinel
[CKAK94, Kri94]. The definition of the se-
mantics of Snoop is only partially formal. Thus
sometimes - as it is shown in [Zim96] - its se-
mantics is ambiguous.

In addition to the standard event operators
conjunction (A), disjunction (V), sequence (;)
and negation (NOT) Snoop defines the opera-
tors: ANY, A, P, A* and P*. Events based on
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the ANY operator, denoted as ANY(m, Fj,
Fy,

events from m types out of the n distinct event
6

.y E,), where m < n, occur whenever
types occur®. Fvents based on the a-periodic
operator A, denoted as A(F,, Fy, F3), occur
whenever the a-periodic event (Fy) occurs dur-
ing the closed time interval specified by Fy and
F5. The periodic operator P is used to define
periodically occurring temporal events. A* and
P* are cumulative versions of the operators A
and P, i.e. events based on them are only trig-
gered once at the end of the time interval (F3).

Based on the initiator and terminator events
Snoop defines four parameter contexts:

In the recent context only the most re-
cent instance of the set of instances that
may have started the detection of a complex
event is used. When a complex event occurs
the instances of the component event types
which cannot be initiators of future events are
deleted. An initiator of an event continues to
initiate new event occurrences until a new ini-
tiator occurs.

In the chronicle context the oldest instance
of each component event type is bound to the
instances of its parent type. The instances of
the component event types can only be used
once.

In the continuous context, if a terminator
event is detected, for each initiator an event
instance of its parent type is generated. In
this context, an initiator is used at least once
for detecting complex events.

In the cumulative context all instances of the
component event types are bound to the in-
stance of the parent type. The instances of
the component event types can only be used
once for an event detection.

Every Snoop operator can be combined with
one of these parameter contexts to form an
event type. A complex event can be con-
structed by applying several operators which
may have assigned different parameter con-
texts. This aspect has not been investigated

by Snoop in further detail.

fThe semantics of the ANY-operator can be speci-
fied by the conjunction and disjunction operator. For
example, the semantics of the type ANY (2, Ey, Fs,
F3) is equivalent to the semantics of the type ((Fq A
By NVo( Byl B Va(EadsBs ) mTherefore we will not,

consider the ANY-operator 1n this paper any more.

In contrast to our model the parameter modes
of Snoop can be specified on the level of com-
plex event types rather than on the component
event type level. The parameter contexts de-
fine a fixed combination of the values of the
dimensions event instance selection and event
instance consumption introduced in our model.
Thus the configuration possibilities offered by
Snoop are limited to these combinations.

4.1.2 SAMOS

In SAMOS [Gat94] the semantics of complex
events are defined informally. However, a more
precise definition of their semantics can be ob-
tained from labeled petri nets which are used
for their detection. Simultaneously occurring
events are explicitly excluded.

SAMOS defines the binary event operators
conjunction (,), disjunction (]), and sequence
(;), and the unary operators negation (NOT),
* last and TIMFES(n,F). The unary operators
must be used in conjunction with a monitor-
ing time interval”, denoted as "IN [start_point,
The start and the end point of
the interval can be defined explicitly by an ab-

end_point]’.

solute or relative point in time or implicitly
by the occurrence of events of specified event

types.
sumes the time between the definition time of

If no interval is given the system as-

the complex event type and infinity. Events
which mark the monitoring interval of complex
events are not bound to them.

The operators * and last are used whenever
complex events should only be signaled once
during a given time interval, even if the pattern
specified by the corresponding event types oc-
curs several times. While the * operator selects
the oldest occurrence of an event of a given
type the last operator chooses the most recent
occurrence. Fvents based on the * operator
are signaled as soon as the complex event to
be monitored occurs for the first time while
events based on the last operator are signaled
at the end of the monitoring interval.

The TIMES operator can be used in differ-

ent variants. Fvents based on the variant

A monitoring interval can also be defined for the
binary event operators. But for these operators it is
optional.

10
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TIMES(n,E) IN [ are signaled each time n
events have occurred during the time inter-
val I, events based on the variant TIMFES([nq-
no],E) IN I are signaled at the end of I if
events of the type I occurred between n; and
ny times in I and events based on the variant
TIMES([> n4], ) IN T are signaled at the end
of Iif events of the type F have occurred more
than n; times. The TIMFES operator uses the
cumulative selection mode, i.e. all events of
the type E which caused the complex event to
occur are bound to it.

For the operators of the event algebra of
SAMOS the event instance selection and con-
sumption policies are fixed. But the user has
the possibility to partly influence these aspects
by using the operators TIMES, * and last.

4.1.3 Ode

Ode [GJS92, WCI6] defines its semantics of
complex events on a formal level. Tts definition
is based on event histories (histories) which
contain a finite set of events that are totally
ordered by their event times. The semantics
of an event type F is defined as a mapping
from histories to histories, i.e. K: histories —
histories. The resulting history FK[h] contains
those events of A which trigger an event of the
type K. An event type can be NUILL, any
primitive event type a, or a complex event type
that consists of component event types. These
can be combined by one of the operators A, !
(not), relative, relative+, V, any, prior and
sequence®. Let I/ and I be event types. Their
semantics are defined as follows:

. E[null] = null for any event type I/, where
null is the empty history.

. NULLIRh] = null.

alh] is the maximal subset of i composed
of events of the type a, where a is a prim-
itive event type.

4. (E A )R] = E[h] 0 Fh]

5. (1)) = (h - FIh])

8 Qdepdefimespapnumbersofsfurthersevent operators,
that are not considered in this paper.

11

6. relative(F, I)[h] are the events in h that
trigger events of F. However, only that
parts of h are considered that at each time
start immediately after an instance of F
is detected.

Let E'[h] be the i event in E[h]. Tet h;
be obtained from A by deleting all events
with an event time older than or equal to
the event time of F'[A]. Then
relative(F, I)[h] = U; F[hi],
where 7 ranges from 1 to the cardinality of

1[h).

7. relative(F)[h] = U2, relative’(F)[h]
where
relative'(E) = F and
relative’(F) = relative(relative’ (),

(v F)[h] = 1(0E A LF)[A).

any denotes the disjunction of all the
primitive event types.

10.

prior(F, F)[h]
F)[R].

The operator prior specifies, that an event,

(relative(F, any) A

of I has to take place after an event of I/
has taken place. These events of I/ and F
may - in contrast to the operator relative
- overlap.

11. sequence(F,  F)[h] (relative( F,
Wrelative(any, any))) A F)[h].

The operator sequence specifies immedi-

ately successive triggering of events of the
types I and F.

In Ode [GJS92] the semantics of the event in-
stance selection is discussed shortly. The se-
lection of event instances consists of two steps:
In the first step the alternative event instance
sequences that fulfil the event instance pattern
are computed. In the second step the event in-
stance selection is performed through queries
on the event instance sequence set computed
in the first step. A detailed description of pos-
sible selection strategies as well as their real-
ization is postponed to a future paper.
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4.2 Specification of the Event
Algebras

In this section we will specify the semantics
of the event algebras of Snoop, SAMOS and
Ode on the basis of our meta-model (for the
specification of further event algebras, such
as ACOOD [Eri93], ADL [Beh95], Chimera
[MPC96], NAOS [CCI6] see [7im97]). For each
of these event algebras we will present a table
which contains its specification. Fach table is
organized as follows.

For each operator of an event algebra there is
an entry that may stretch over a maximum of
three rows. The first column of each entry con-
tains the event type to bhe specified (notation
of the event algebra to be examined, upper
row) and the skeleton of the event type of the
meta-model on which the specification is based
(notation of the meta-model, lower row). The
second column lists the component event types
for which the subsequent columns contain the
modes that must be assigned to them to form
the complete event type of the meta-model.
The table for Snoop contains a separate col-
umn that specifies the semantics for each pa-
rameter context.

We use abbreviations for the different modes:
sh for shared, ex for exclusive, in for inside,
out for outside, param for parameter, cum for
cumulative, comb for combinations, min for
minimum and rest for restricted.

Whenever the semantics of an event algebra,
from our point of view, is ambiguous or irreg-
ular we mark it by adding the symbol '7" and
using bold letters for the mode that causes the
irregularity.

Example 10:

Consider the Snoop operator (Fy A Fy) in the
parameter context chronicle (see table 3). The
table should be read as follows:

o first column, first row: (F; A Fy) is the
notation of Snoop

o first column, second row: A (Fy, F3) is
the principal notation in our meta-model

e second column, first (second) row: F;
(Hajsmmeansgthatethesoccurrence of F;
(F3) in the skeleton notation of the meta-

12

model must be enriched by the specifica-
tions in column 4 (chronicle).

Altogether this results in the following meta-
model expression, that is equivalent in its se-
mantics to the original notation of Snoop:

A (first : exclusive parameter @ Fy, first : ex-

clusive parameter : Fy).

4.2.1 Snoop

Table 3 presents the specification of Snoop on
the basis of our meta-model. let us consider
some examples describing some irregularities
of Snoop that were detected with the help of
our specification presented in table 3 (Further
examples can be found in [ZUM97, 7Zim97]).
In these examples the Snoop event types are
denoted by a parameter context followed by

an event operator and its operands.

Example 11:
Consider the event types: Ky := recent Fy;F5

and Fs = recent NOT(F3)[Fy,F5] and the
event instance sequence F1S5° := ei] ei} eis.

The sequence ET1S5% causes the recognition of
two events e} and e} of Fj represented by e}

(eijeil) and ei? (erjeis) but only one event el

of Fs represented by eil (eijerd).

An event type based on the negation opera-
tor is an extension of the event type based
on the sequence operator that defines the
time interval during which the non-existence
of events is monitored. Thus, in the case of
the non-occurrence of the specified events, one
would assume that the behavior of these event
types is the same. Unfortunately, these event
types use different event instance consumption
modes for their first component event type:
while the event type based on the sequence
operator uses the shared mode, the event type
based on the negation operator uses the exclu-
sive mode.

Example 12:

The recent and the chronicle parameter con-
texts use different event instance consumption
modes.  While in the recent parameter con-
text the event instances are often? shared, they
are used exclusively in the chronicle parameter

context.

Only terminator events are used exclusively.
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Snoop-ET parameter contexts

Meta—Model-ET E_'?‘ recent chronicle continous cumulative
E,A B E, | last: sh first: ex param | combmin: shin:  exout cum: ex param
A (E1 ’ E2 ) E2 last: sh first: ex param | combmin: shin: exout cum : ex param
BEv & E ex param ex param ex param ex param
vV (EE) E ex param ex param ex param ex param
El ; EZ El last: sh first: ex param | comb min: ex param cum : ex param
; (5 ,5) ) ex param ex param shin: ex param out ex param
NOT (EZ) [El’E3] El last: ex first: ex param | comb min ; ex param ?first 1 ex param
- ( ElszvE;.;) E3 ex param ex param shin: exparam out ex param
Al El,E3,E2) El last: sh first: €X param | comb min :ex param in : sh out first: ex param
- (B EyE5) E; ex param ex param shin: ex param out ex param
A ( ElszvEg) El last : ex first: ex param | comb min : ex param ?first:  ex param
V= ( El’Ez‘E3) 15 ?restcum: ex |restcum :ex param| restcum: shin: exout: rest cum :ex param
( El’EZ’E3)) 2?1 E3 ex param ex param shin: ex param out ex param

Figure 3: The semantics of the complex events defined in Snoop

Consider the event types F3 := recent (F; A
Fy) and Fy := chronicle (Fy /A Fy) and the

event instance sequence F1S5% := ei] ei} eil.

The sequence ET15% causes the recognition of

er

two events el and €2 of Fs represented by eil

(eiqeiy) and el (er)

of F4 represented by ei} (eijeiy).

e15) but only one event e}

Example 13:

The event instance consumption mode of the
first component event type of events based on
the a-periodic operator used in the chronicle
context is exclusive parameter. Thus, the char-
acteristics of the a-periodic operator get lost,
as it is signaled only once (for every event in-
stance of the first component event type).
Consider the event type Fy := chronicle A(F;,
Fy, F3) and the event instance sequence K157
= e1] ey €1l eiy eiy. The sequence FTS7
causes the recognition of only one event ¢} of
F4 represented by ei} (eijeiy) and not - as one
may expect - three events.

Example 14:

Let us consider event types based on the a-
periodic operator A used in the continuous pa-
rameter context. The event instance consump-
tion mode of their first component event type
is exclusive parameter inside : shared outside,

i.e., its instances can only be used once inside

13

a group but they are shared between different
groups. Thus, instances of the second compo-
nent event type occurring after an instance of
the first type are not only associated with this
instance but also with every older instance of
the first type:

Consider the event type F continuous
yp 4
A(F,, I, F3) and the event instance sequence
9 9 q
FTS%:=eil el ei? €12 €12 The sequence K158
1 Clg €1y €1y €lg q
causes the recognition of the events e}, €2, e,

ey and e} of E, represented by ei} (eijery),

eis (eiqeis), eiy (eiteid), eiy (eijery) and e
(eiei’).

4.2.2 SAMOS

Table 4 presents the specification of SAMOS

on the basis of our meta-model. T.et us con-

sider some examples of the irregularities of
SAMOS we have noticed through the specifi-

cation of its semantics.

Example 15:
Consider the event type Fy := NOT Fy IN [F;-

Fs] and the event instance sequence FT15? :=

1 2 1 1

. . . . .2 . .
€1, €17 €1y ey eiz. The timeinterval [ - Fa] can

be instantiated several times, e.g., I} = [ei1},e11]

and Iy = [ei?,ei]. As during both time inter-

vals an instance of Fy (ei}) occurs, one might,
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expect that 159 does not cause an event of F,
to occur. But the event detection algorithm of
the NOT operator specified by a labeled petri
net (see [Gat94], page 110) deletes instances of
Fy, and thus ei2 causes the occurrence of an
event of I4.

Example 16:

SAMOS-ET Consider the event type Fy := *Fy IN [F-
CP-
Meta-Model-ET | ET | CPET-Modes

Fs] and the event instance sequence K150 :=

e} eiy eit el eik eid. Again the time inter-
E, . E E, first : ex param val [Fy,Fs] ca,.? b? instantiated Zew?;"a] tim(?s,
N (B Ey) E, | first: ex param E‘g": h = [€Z1’€Z3] ;mdq f = [6.72/”67/3]' While
oth event instances ei;, and e of Fy occur
E1E = ex param during I, only ei2 occurs during I,. The se-
vV (E | Ey) ex param quence E1S' causes .the occurrence of only
- one instance of Fy: ei} (eil) rather than two
5 & first : ex param instances e1} (eiy) and ei} (e13), as one might
: (E1 ’ Ez) ex param expect.
E,+ E,IN[EfE] ?first :sh Example 17:

Consider the event type Fyq := (Fi; xFy) IN

(E, E,E.) .

1555 . o param [~ F3] and the event instance sequence FTS"!
BB first . ex = e} eiy iz eiy. The sequence FTS' causes
. (B ) ex param the occurrence of two events of £, (see [Gat94],

. 11T,
lastE | E, last - €x p )
. (E; | E) ex param Example 18:

Consider the event type F, := TIMES(2,F,)

? first : ex param IN [Fy,F3] and the event instance sequence

TIMES ((nyn] . E))

RULNINULEMRLE PRUNENLIRUOLY INILSL PRLSIEULE INUSTSUY BNLLINLY INL

IN [Ef Eg] rest cum :ex param ‘EIS”Q = ei) ely ers 'ei% e'i; er eig‘ e1f. Fvent
(B EE) instances of type Fs5 invalidate all instances of
; n-n)E,, .

1) B 5 eX param Iy which have already occurred. Thus, events
TIMES (>n]. E)) ? first : ex param of type Fy4 are triggered twice: ei) (eitei}) and
IN [E7 Eg] rest cum -ex param ‘eii (F’?;P?%) Therefore, the event instance ei?
(E (N9 ELE) is not signaled after an even number of event
(B ) 55 ex param occurrences of type Fy relative to the lower
TIMES (n. E,) E, |?fist: sh bound of the time interval, as one might ex-

_ ect.
IN [Ef E,] p
- (E B3 (NEY) E, | exparam

NOT (E5) IN [E1E] |y ? first ; ex param

~(Ep B3 By B3 | exparam 4.2.3 Ode

Figure 4: The semantics of the event operators

Table 5 presents the specification of Ode on the
defined in SAMOS

basis of our meta-model. The semantics of the
conjunction and negation operators are quite
different from that of other event algebras:

A conjunction of two event types occurs when-
ever events of both component event types oc-
cur simultaneously. A negation of an event
type occurs whenever an event of a different
type occurs.

14
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Ode-ET

Meta—Model-ET CE:'T')_ CPET-Modes
El A E2 E, ex param
== (E1 , E2 ) E2 ex param
EIE = ex param
v (E1’E2) E2 ex param
|relative €, E,) E, |?first:sh
|non—overlap (B BE)|E, ex param
[prior (El’ E2) E, |?first:sh
; (El,Ez) E, ex param
sequence (El' E2) E, | last:ex
continuous ; (E; | E,) E, ex param
'Eq E ex param
v (B, B ... ) E, ex param

Figure 5: The semantics of the event operators

defined in Ode

5 Comparison of the Event
Algebras

In the following we will compare the seman-
tics of the conjunction, negation and sequence
operators of the different event algebras with
the help of our meta-model. The disjunction-
operator is omitted since it has the same se-
mantics in each event algebra. FEach other op-
erator is represented by a separate table.

There is an entry (row) for each specialization
of the semantics of an operator in a given event
algebra. If the same operator can be expressed
in several models there will be several entries
in the first two columns of a row, separated by
a dashed line. If there is no entry for an event
algebra in a given table this simply means that
the corresponding operator is not supported by
the algebra. Otherwise, all possible specializa-
tions of an operator are listed which implies
that missing specializations are not supported.

The first column of an entry defines the event
algebra and the second the event type to be
specified. The other columns contain the spec-
ification-ofan-event-type-based on the meta-
model. The third column defines the skeleton

of the event type of the meta-model on which
the specification is based. As the skeleton of
most of the operators is the same, it is listed
at the head of the table. The other rows only
contain information when there are additional
modes or different skeletons. The remaining
columns define the modes assigned to the com-
ponent event types listed at the head of the col-
umn. These columns serve the same purpose
as the parameter context columns in the pre-
vious tables: they refine the skeleton in that
the appropriate component event type of the
skeleton has to be enriched with the specifica-
tion of the column.

Note: In Snoop the same semantics can be ex-
pressed by different expressions (as can be seen
from the first row of table 8).

Target-ET Meta—Model-ET
ET CP-ET

Name ET N (El ' Ez) E1 E2
SAMOS E B first: ex param |first: ex param
Snoop |chronicle EJAE, first: exparam |first: ex param
Snoop |recent ElA E2 last : sh last : sh
Snoop |cumulative E/AE, cum @ ex param | cum : ex param
Snoop [continous E AE. comb min : comb min :

12 shin: exout shin: exout
Ode ENE, = (g |E) ex param ex param

Figure 6: The Conjunction Operator

6 Related Work

A systematic and profound debate about event
specification has not yet started. Instead,
most papers treat only specific aspects of a
rule model in an isolated manner or concen-

trate on the narrow model of a specific pro-
totype. For example, ACOOD [Eri93], ADI
[Beh94, Beh95], Chimera [MPC96], NAOS
[CCI6], REACH [BBK793] and Reflex [NT194]
are based on the event algebras discussed in
more detail in the previous sections.

Other papers that do not directly rely on
a specific model discuss formal aspects on a
more general level (for example [HJ91, Wid92,
7an93, GHJ193, FMT94, CFPT95, CC95]; for
an overview see [PCFW95]).

only insufficiently treat complex event specifi-

They do not or

cation. To our best knowledge our paper is the

15
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Target-ET Meta-Model-ET
ET CP-ET
Name ET
(B B) & 5 5
Ode prior (El,Ez) 2first :sh ex param
Ode relative (E, E,) non-overlap ?first :sh ex param
samos |EpEIN [ET ] ?first :sh ex param
SAMOS E1? E2 first: ex param| ex param
Snoop |chronicle E; E, first : ex param| ex param
SAMOS *E B, first : ex ex param
SAMOS| lastE,: E, last : X ex param
Ode sequence ( E1,E2) continuous last : ex ex param
Snoop | recent  E;-E, last : sh ex param
Snoop | cumulativeE,: E, cum :ex param| ey param
Shoo continous E1§ E2 comb min : shin:
P ex param ex param out
samos |TVES (ngn]E) {(Ey(nzn) EpES) ? first : rest cum : ex param
IN [Ef E5] ex param ex param
SAMOS TIMES (>n] E)) [;( El,(nl—) E,Ep) | ?first: rest cum :
IN [ EI E3] ex param ex param ex param
recent vE(E BB,
Snoo et : .
p A*(El’EZ'E3) ’(El’EZ’Es)) last : ex ? rest cum : ex | €X param
chronicle vV E..E,.E,), .
Snoop *(E, ,E,.E)) (j.( 1 EZ E3) first : ex param rest cum : ex param
A S5 (Eq By EQ)) ex param
Figure 7: The Sequence Operator
Target-ET Meta-Model-ET
ET CP-ET
Name ET
- (ELE,Ey) E 5
SAMOS [NOT (E3) IN [EI Eﬂ ? first :ex param | ex param
gn;)p  chronice | [ | ]
_ (EZ) [El'E3] first :lex param | ex param
gng); [ cumulaive | ofist: ||
- (E2) [El'E3] ex param ex param
coop | CUmulative | [ ] ]
Snoop (E ) first : ex param| €X param
eSS T ]
S chronicle first : ex param
noo :
p Al E1'E3'E2) ex param
Snoo recent
P lA( E EE) last: sh ex param
Snoo recent
P - E)IEE last : ex ex param
Snoop continous comb min : shin:
A(E; E5E) exparamin: | ex param out
sh out
Snoop continous comb min : shin:
- E)IE B ex param ex param out
TIMES (n. E,) ot
SAMOS _ 2 first : sh
IN [E1 E3] ex param
ode 'E, vV (B, Bs ... F)| exparam ex param

Figure 8: The Negation Operator

16
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first one that discusses the semantics of com-
plex events in detail.

7 Conclusions

In this paper we have presented the basic con-
cepts of a formal meta-model that defines the
semantics of complex events. It is based on the
three dimensions event instance pattern, event
instance selection and event instance consump-
tion. The event instance pattern is respon-
sible for the specification of the point in time
at which events occur, the event instance se-
lection defines which events are bound to a
complex event, and the event instance con-
sumption determines when events become in-
valid, i.e., cannot be considered for the detec-
tion of further complex events.

In principle, while an event instance pattern
is associated with an event type, the dimen-
sions event instance selection and event in-
stance consumption are related to the compo-
nent event types of complex event types.

The three dimensions are independent in re-
spect of their usage, i.e., they can be combined
without any restrictions. In particular, the
event instance selection and the event instance
consumption policies can be chosen separately
for each component event type of a complex
event type. Moreover, our model allows for si-
multaneously occurring events.

The model presented in this paper contributes
to the ongoing work in the area of active
database systems in several ways:

1. We developed a flexible meta-model which
can be used to specify the semantics of
complex events defined in other rule mod-
els.

2. This model can be used to compare the
semantics of complex events defined in ex-
isting rule models.

3. Our model can be used as a basis for the
definition of new event algebras.

4. The semantics of our model is defined for-
mally. Thus, different interpretations of
thesemantics.ofagiven.complex event are
not possible.

5. The meta-model helps in gaining a solid
understanding of the basic properties of
complex events and the interrelationships
between their components.

8 Appendix

The syntax of a complex event type is defined

as follows:
< CET > = < pattern >
< pattern > = [< op mode >] < OP >

(< CPETlist > )
< CPETlist > = < CPET > |
<CPET >, < CPET Ilist >

<CPET > = [< opd mode >] < FT >
< ET > 2= < PET>|<CET >
<OP > === |3 |A|V ]
< op mode > == [< ec mode > ]
[< coup mode > ]
[< trav mode > :]
< cc mode > ::= non-overlapping
| overlapping
| [default : overlapping]
< coup mode > = continuous | non-continuous
| [default : non-continuous]
< trav mode > = left-to-right | right-to-left

| [default : left-to-right]

[< par select > :]

[< cosu > :] [< delimiter > ]
< par select > = first | last | cumulative

< opd mode > =

| restricted cumulative
| combinations [minimum)]
| [default : last]
< cosu > == inside < cosu mode > :
outside < cosu mode >
| < cosu mode >
< cosu mode > ::= exclusive | shared
| exclusive parameter |
[default:exclusive parameter|
< delimiter > == (<inleger >) | (< range >)
< range > = <integer > - < integer > |
< integer > - | - < integer >

The definition of the syntax of a complex event
type (CET) reflects the three dimensions of the
semantics of a complex event:

The event instance pattern is defined by an
operator (op), an operator mode (op mode) and
a list of component event types (CPFET list)
if necessary supplemented by a delimiter. A
component event type (CPET) can be a com-
plex or primitive event type (PET). The event
instance selection is defined by the modes

17

www.manaraa.com



par select and trav mode while the event in-
stance consumption is defined by the mode
cosu.
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